Journal Home > Volume 9 , Issue 1
Background

To disentangle the controls on species distribution in the context of climate change is a central element in proposed strategies to maintain species diversity. However, previous studies have focused mainly on the roles of abiotic factors (e.g., climate and soil properties), with much less attention given to the roles of biotic factors such as functional traits. Here, we measured eight leaf traits for 240 individual trees of 53 species and analyzed the variation in traits and population composition indices and their relationships with soil properties, climate factors, and leaf traits.

Results

The tree density, frequency and species importance values of the overall species and saplings significantly increased with increasing elevation, while the same indices (except for species frequency) of adults did not significantly change. The largest percentage of variation of species importance value (greater than 50%) was explained by climate, but leaf traits played a critical role in driving elevation distribution patterns of both saplings and adults; the abundance of saplings significantly increased with elevation, with increased leaf carbon contents, while the abundance of adults did not change in accordance with a nutrient conservation strategy associated with the leaf economic spectrum.

Conclusions

Our results suggest that the elevation gradient distribution of woody plant species is dependent on tree size and that local atmospheric humidity and leaf traits cause considerable variation in species distribution along subtropical mountain elevations. We provide evidence of which leaf traits play a key role in the elevation gradient distribution of different sizes of woody tree species.


menu
Abstract
Full text
Outline
About this article

Elevation gradient distribution of indices of tree population in a montane forest: The role of leaf traits and the environment

Show Author's information Zuhua Wanga,bRong ZhengcLilin Yanga,bTinghong Tana,bHaibo LidMin Liua,b( )
College of A&F Engineering and Planning, Tongren University, Tongren 554300, Guizhou, China
Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren 554300, Guizhou, China
College of Life and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
National Nature Reserve Administration of Fanjing Mountain, Tongren 554400, Guizhou, China

Abstract

Background

To disentangle the controls on species distribution in the context of climate change is a central element in proposed strategies to maintain species diversity. However, previous studies have focused mainly on the roles of abiotic factors (e.g., climate and soil properties), with much less attention given to the roles of biotic factors such as functional traits. Here, we measured eight leaf traits for 240 individual trees of 53 species and analyzed the variation in traits and population composition indices and their relationships with soil properties, climate factors, and leaf traits.

Results

The tree density, frequency and species importance values of the overall species and saplings significantly increased with increasing elevation, while the same indices (except for species frequency) of adults did not significantly change. The largest percentage of variation of species importance value (greater than 50%) was explained by climate, but leaf traits played a critical role in driving elevation distribution patterns of both saplings and adults; the abundance of saplings significantly increased with elevation, with increased leaf carbon contents, while the abundance of adults did not change in accordance with a nutrient conservation strategy associated with the leaf economic spectrum.

Conclusions

Our results suggest that the elevation gradient distribution of woody plant species is dependent on tree size and that local atmospheric humidity and leaf traits cause considerable variation in species distribution along subtropical mountain elevations. We provide evidence of which leaf traits play a key role in the elevation gradient distribution of different sizes of woody tree species.

Keywords: Climate change, Species distribution, Elevation gradient, Leaf traits, Leaf economic spectrum, Mt. Fanjingshan

References(39)

Adler, P.B., Salguero-Gomez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C., Franco, M., 2014. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. 111, 740-745

Ahrens, C.W., Andrew, M.E., Mazanec, R.A., Ruthrof, K.X., Challis, A., Hardy, G., Byrne, M., Tissue, D.T., Rymer, P.D., 2020. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecol. Evol. 10, 232-248

Bonan, G.B., Shugart, H.H., 1989. Environmental factors and ecological processes in boreal forests. Ann. Rev. Ecol. Syst. 20, 1-28

Batllori, E., Lloret, F., Aakala, T., Anderegg, W.R.L., Aynekulu, E., Bendixsen, D.P., Bentouati, A., Bigler, C., Burk, C.J., Camarero, J.J., Colangelo, M., Coop, J.D., Fensham, R., Floyd, M.L., Galiano, L., Ganey, J.L., Gonzalez, P., Jacobsen, A.L., Kane, J.M., Kitzberger, T., Linares, J.C., Marchetti, S.B., Matusick, G., Michaelian, M., Navarro-Cerrillo, R.M., Pratt, R.B., Redmond, M.D., Rigling, A., Ripullone, F., Sanguesa-Barreda, G., Sasal, Y., Saura-Mas, S., Suarez, M.L., Veblen, T.T., Vila-Cabrera, A., Vincke, C., Zeeman, B., 2020. Forest and woodland replacement patterns following drought-related mortality. Proc. Natl. Acad. Sci. 117, 29720-29729

Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jimenez-Alfaro, B., Hennekens, S.M., Botta-Dukat, Z., Chytry, M., Field, R., Jansen, F., Kattge, J., Pillar, V.D., Schrodt, F., Mahecha, M.D., Peet, R.K., Sandel, B., van Bodegom, P., Altman, J., Alvarez-Davila, E., Arfin Khan, M.A.S., Attorre, F., Aubin, I., Baraloto, C., Barroso, J.G., Bauters, M., Bergmeier, E., Biurrun, I., Bjorkman, A.D., Blonder, B., Carni, A., Cayuela, L., Cerny, T., Cornelissen, J.H.C., Craven, D., Dainese, M., Derroire, G., De Sanctis, M., Diaz, S., Dolezal, J., Farfan-Rios, W., Feldpausch, T.R., Fenton, N.J., Garnier, E., Guerin, G.R., Gutierrez, A.G., Haider, S., Hattab, T., Henry, G., Herault, B., Higuchi, P., Holzel, N., Homeier, J., Jentsch, A., Jurgens, N., Kacki, Z., Karger, D.N., Kessler, M., Kleyer, M., Knollova, I., Korolyuk, A.Y., Kuhn, I., Laughlin, D.C., Lens, F., Loos, J., Louault, F., Lyubenova, M.I., Malhi, Y., Marceno, C., Mencuccini, M., Muller, J.V., Munzinger, J., Myers-Smith, I.H., Neill, D.A., Niinemets, U., Orwin, K.H., Ozinga, W.A., Penuelas, J., Perez-Haase, A., Petrik, P., Phillips, O.L., Partel, M., Reich, P.B., Romermann, C., Rodrigues, A.V., Sabatini, F.M., Sardans, J., Schmidt, M., Seidler, G., Silva Espejo, J.E., Silveira, M., Smyth, A., Sporbert, M., Svenning, J.C., Tang, Z., Thomas, R., Tsiripidis, I., Vassilev, K., Violle, C., Virtanen, R., Weiher, E., Welk, E., Wesche, K., Winter, M., Wirth, C., Jandt, U., 2018. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906-1917

Chen, I.C., Hill, J.K., Ohlemuller, R., Roy, D.B., Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-1026

Cottam, G., Curtis, J.T., 1956. The use of distance measures in phytosociological sampling. Ecology, 37, 451-460

Crowther, T.W., Glick, H.B., Covey, K.R., Bettigole, C., Maynard, D.S., Thomas, S.M., Smith, J.R., Hintler, G., Duguid, M.C., Amatulli, G., Tuanmu, M.N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S.J., Wiser, S.K., Huber, M.O., Hengeveld, G.M., Nabuurs, G.J., Tikhonova, E., Borchardt, P., Li, C.F., Powrie, L.W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A.C., Umunay, P.M., Piao, S.L., Rowe, C.W., Ashton, M.S., Crane, P.R., Bradford, M.A., 2015. Mapping tree density at a global scale. Nature 525, 201-205

Garcia-Palacios, P., Gross, N., Gaitan, J., Maestre, F.T., 2018. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl. Acad. Sci. 115, 8400-8405

Gong, H., Li, Y., Yu, T., Zhang, S., Gao, J., Zhang, S., Sun, D., 2020. Soil and climate effects on leaf nitrogen and phosphorus stoichiometry along elevational gradients. Glob. Ecol. Conserv. 23

Gornish, E.S., Tylianakis, J.M., 2013. Community shifts under climate change: mechanisms at multiple scales. Am. J. Bot. 100, 1422-1434

Gorzelak, M.A., Ellert, B.H., Tedersoo, L., 2020. Mycorrhizas transfer carbon in a mature mixed forest. Mol. Ecol. 29: 2315-2317

Hietz, P., Rosner, S., Hietz-Seifert, U., Wright, S.J., 2017. Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol. 213, 170-180

Humagain, K., Portillo-Quintero, C., Cox, R., Cain, J., 2017. Mapping tree density in forests of the Southwestern USA using Landsat 8 data. Forests 8

Holway, J.G., Scott, J.T., Nicholson, S., 1969. Vegetation of the Whiteface Mountain region of the Adirondacks. Atm. Sci. Res. Center Report, 92, 1-49

Jones, J.B., 2001. Laboratory guide for conducting soil tests and plant analysis. CRC Press, New York, NY

Kemppinen, J., Niittynen, P., le Roux, P.C., Momberg, M., Happonen, K., Aalto, J., Rautakoski, H., Enquist, B.J., Vandvik, V., Halbritter, A.H., Maitner, B., Luoto, M., 2021. Consistent trait-environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 5, 458-467

Liu, Z., Hikosaka, K., Li, F., Jin, G., Ostertag, R., 2020. Variations in leaf economics spectrum traits for an evergreen coniferous species: Tree size dominates over environment factors. Funct. Ecol. 34, 458-467

Martin, A.R., Thomas, S.C., 2013. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. Tree Physiol. 33, 1338-1353

May, F., Giladi, I., Ristow, M., Ziv, Y., Jeltsch, F., 2013. Plant functional traits and community assembly along interacting gradients of productivity and fragmentation. Perspect Plant Ecol. 15, 304-318

O'Sullivan, K.S.W., Ruiz-Benito, P., Chen, J.C., Jump, A.S., 2020. Onward but not always upward: individualistic elevational shifts of tree species in subtropical montane forests. Ecography 44, 112-123

Parmesan, C., Hanley, M.E., 2015. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849-864

Pec, G.J., Simard, S.W., Cahill, J.F, Jr. Karst, J., 2020. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30, 173-183

Perez-Ramos, I.M., Matias, L., Gomez-Aparicio, L., Godoy, O., 2019. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat. Commun. 10, 2555

R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for. Statistical Computing, Vienna, Austria. https://www.R-project.org/ (accessed 12 March 2021)

Read, Q.D., Moorhead, L.C., Swenson, N.G., Bailey, J.K., Sanders, N.J., Fox, C., 2014. Convergent effects of elevation on functional leaf traits within and among species. Funct. Ecol. 28, 37-45

ReichP.B.CornelissenH.The world-wide ‘fast-slow’ plant economics spectrum: a traits manifestoJ. Ecol.201410227530110.1111/1365-2745.12211

Reich, P.B., Cornelissen, H., 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275-301

Rowland, L., da Costa, A.C., Galbraith, D.R., Oliveira, R.S., Binks, O.J., Oliveira, A.A., Pullen, A.M., Doughty, C.E., Metcalfe, D.B., Vasconcelos, S.S., Ferreira, L.V., Malhi, Y., Grace, J., Mencuccini, M., Meir, P., 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119-122

Simard, S.W., Perry, D.A., Jones, M.D., Myrold, D.D., Durall, D.M., Molina, R., 1997. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579-582

Sirami, C., Gross, N., Baillod, A.B., Bertrand, C., Carrie, R., Hass, A., Henckel, L., Miguet, P., Vuillot, C., Alignier, A., Girard, J., Batary, P., Clough, Y., Violle, C., Giralt, D., Bota, G., Badenhausser, I., Lefebvre, G., Gauffre, B., Vialatte, A., Calatayud, F., Gil-Tena, A., Tischendorf, L., Mitchell, S., Lindsay, K., Georges, R., Hilaire, S., Recasens, J., Sole-Senan, X.O., Robleno, I., Bosch, J., Barrientos, J.A., Ricarte, A., Marcos-Garcia, M.A., Minano, J., Mathevet, R., Gibon, A., Baudry, J., Balent, G., Poulin, B., Burel, F., Tscharntke, T., Bretagnolle, V., Siriwardena, G., Ouin, A., Brotons, L., Martin, J.L., Fahrig, L., 2019. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl. Acad. Sci. 116, 16442-16447

Soudzilovskaia, N.A., Elumeeva, T.G., Onipchenko, V.G., Shidakov, II., Salpagarova, F.S., Khubiev, A.B., Tekeev, D.K., Cornelissen, J.H., 2013. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc. Natl. Acad. Sci. 110, 18180-18184

Sundqvist, M.K., Sanders, N.J., Wardle, D.A., 2013. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Ann. Rev. Ecol. Syst. 44, 261-280

Steinbauer, M.J., Grytnes, J.A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., Bjork-man, A.D., Breiner, F.T., Burg, S., Czortek, P., Dawes, M.A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V.A., Fernandez-Arberas, O., Fossheim, K.F., Gomez-Garcia, D., Georges, D., Grindrud, E.T., Haider, S., Haugum, S.V., Henriksen, H., Herreros, M.J., Jaroszewicz, B., Jaroszynska, F., Kanka, R., Kapfer, J., Klanderud, K., Kuhn, I., Lamprecht, A., Matteodo, M., Morra di Cella, U., Normand, S., Odland, A., Olsen, S.L., Palacio, S., Petey, M., Piscova, V., Sedlakova, B., Steinbauer, K., Stockli, V., Svenning, J.-C., Teppa, G., Theurillat, J.-P., Vittoz, P., Woodin, S.J., Zimmermann, N.E., Wipf, S., 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231-234. https://doi.org/10.1038/s41586-018-0005-6

Vesk, P.A., Morris, W.K., Neal, W.C., Mokany, K., Pollock, L.J., 2020. Transferability of trait-based species distribution models. Ecography 44, 134-147

Wang, B., Zhang, Q., Cui, F., 2021. Scientific research on ecosystem services and human well-being: A bibliometric analysis. Ecol. Indic. 125

Wason, J.W., Dovciak, M., 2017. Tree demography suggests multiple directions and drivers for species range shifts in mountains of Northeastern United States. Glob. Chang. Biol. 23, 3335-3347

Wieczynski, D.J., Boyle, B., Buzzard, V., Duran, S.M., Henderson, A.N., Hulshof, C.M., Kerkhoff, A.J., McCarthy, M.C., Michaletz, S.T., Swenson, N.G., Asner, G.P., Bentley, L.P., Enquist, B.J., Savage, V.M., 2019. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587-592

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827

Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models and extensions in ecology with R. Springer, New York. https://doi.org/10.1007/978-0-387-87458-6
DOI
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Published: 25 February 2022
Issue date: February 2022

Copyright

© 2022 Beijing Forestry University.

Acknowledgements

Acknowledgements

We sincerely thank Zongkun Shi, Zhongfei Pan, Chaohui Ran, Qian Luo, Fangyi Wei, Jiayan Jiang, Huiqing Yang, Jinyan Zhou, Gen Li and Ling Tian for help in the field and laboratory.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).

Return