Journal Home > Volume 9 , Issue 1
Background

Volcanic eruptions have large effects on forest ecosystems and create new substrates, triggering primary succession processes. The Paricutín volcano, born in central-western Mexico, erupted between 1943 and 1952. After the cessation of the eruptive activity, plant colonization began on the lava flows and tephra deposits, including the conifer species that dominate the surrounding mature forests. This study aims to reconstruct the history of the establishment of conifer trees on the substrates created by the Paricutín eruption.

Methods

16 sampling plots were established along three transects with northern, southern, and south-western aspects, located every 250 ​m from the preserved forest to the volcanic cone. Increment cores from 400 conifer trees were extracted and their age was determined by cross-dating annual tree rings. The order of the species colonization and the tree establishment, abundance, and dominance patterns were characterized. Also, the influence of the distance from the mature forests and the inter-annual climatic conditions on the temporal tree establishment pattern was evaluated.

Results

Eight pine and one fir species have been established since 1970, only 18 years after the end of the eruptive period. However, tree establishment increased by 12.9% annually after 1995, with the youngest tree in our sample getting established in 2015. We did not find a well-defined temporal and spatial pattern of species arrival, which suggests that colonization occurred randomly, although the four pine species that were established early became the most abundant and dominant. Tree establishment was not influenced by the distance from the mature forest, and wet inter-annual conditions did not enhance pulses of tree recruitment, exhibiting a continuous tree establishment pattern.

Conclusions

Conifer species have shown a great capacity for colonizing volcanic substrates created by the Paricutín eruption, which suggests that tropical montane conifers can regenerate rapidly under high-magnitude disturbances. These findings support the use of these forest species for ecological restoration.


menu
Abstract
Full text
Outline
About this article

Conifer establishment after the eruption of the Paricutin volcano in central Mexico

Show Author's information Jesús Eduardo Sáenz-CejaaBlanca Lizeth Sáenz-CejabJ. Trinidad Sáenz-ReyescDiego Rafael Pérez-Salicrupa( )
Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701 Col. Ex hacienda San José de la Huerta, 58190, Morelia, Mexico
Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701 Col. Ex hacienda San José de la Huerta, 58190, Morelia, Mexico
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Uruapan, Av. Latinoamericana 1101, Col. Revolución, 60500, Uruapan, Mexico

Abstract

Background

Volcanic eruptions have large effects on forest ecosystems and create new substrates, triggering primary succession processes. The Paricutín volcano, born in central-western Mexico, erupted between 1943 and 1952. After the cessation of the eruptive activity, plant colonization began on the lava flows and tephra deposits, including the conifer species that dominate the surrounding mature forests. This study aims to reconstruct the history of the establishment of conifer trees on the substrates created by the Paricutín eruption.

Methods

16 sampling plots were established along three transects with northern, southern, and south-western aspects, located every 250 ​m from the preserved forest to the volcanic cone. Increment cores from 400 conifer trees were extracted and their age was determined by cross-dating annual tree rings. The order of the species colonization and the tree establishment, abundance, and dominance patterns were characterized. Also, the influence of the distance from the mature forests and the inter-annual climatic conditions on the temporal tree establishment pattern was evaluated.

Results

Eight pine and one fir species have been established since 1970, only 18 years after the end of the eruptive period. However, tree establishment increased by 12.9% annually after 1995, with the youngest tree in our sample getting established in 2015. We did not find a well-defined temporal and spatial pattern of species arrival, which suggests that colonization occurred randomly, although the four pine species that were established early became the most abundant and dominant. Tree establishment was not influenced by the distance from the mature forest, and wet inter-annual conditions did not enhance pulses of tree recruitment, exhibiting a continuous tree establishment pattern.

Conclusions

Conifer species have shown a great capacity for colonizing volcanic substrates created by the Paricutín eruption, which suggests that tropical montane conifers can regenerate rapidly under high-magnitude disturbances. These findings support the use of these forest species for ecological restoration.

Keywords: Tropical montane forest, Dendrochronology, Age structure, Lava flow, Primary succession

References(54)

Angeles-Cervantes, E., Lopez-Mata, L., 2009. Supervivencia de una cohorte de plantulas de Abies religiosa bajo diferentes condiciones postincendio. Bol. Soc. Bot. Mex. 84, 25-33. http://doi.org/10.17129/botsci.2289

https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1281 (accessed 4 April 2021)]]>

Brewer, P.W., Velazquez, M.E., Sutherland, E.K., Falk, D.A., 2016. Fire History Analysis and Exploration System (FHAES) version 2.0.2. http://doi.org/10.5281/zenodo.34142

https://www.jstor.org/stable/19456 (accessed 4 April 2021)]]>

Cerano-Paredes, J., Villanueva-Diaz, J., Cervantes-Martinez, R., Vazquez-Selem, L., Trucios-Caciano, R., Guerra de la Cruz, V., 2014. Reconstruccion de precipitacion invierno-primavera para el Parque Nacional Pico de Tancitaro, Michoacan. Inv. Geog. 83, 41-54. http://doi.org/10.14350/rig.35190

ChangC.C.HalpernC.B.AntosJ.A.AvolioM.L.BiswasA.CookJ.E.delMoral,FischerD.G.HolzA.PabstR.J.SwansonM.E.ZobelD.B.Testing conceptual models of early plant succession across a disturbance gradientJ. Ecol.2019107251753010.1111/1365-2745.13120

Chang, C.C., Halpern, C.B., Antos, J.A., Avolio, M.L., Biswas, A., Cook, J.E., del Moral, E., Fischer, D.G., Holz, A., Pabst, R.J., Swanson, M.E., Zobel, D.B., 2019. Testing conceptual models of early plant succession across a disturbance gradient. J. Ecol. 107(2), 517-530. http://doi.org/10.1111/1365-2745.13120

Cook, E.R., 2000. Nino 3 Index Reconstruction. ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/nino3_recon.txt (accessed 4 April 2021)

Cook, J.E., Halpern, C.B., 2018. Vegetation changes in blown-down and scorched forests 10-26 years after the eruption of Mount St. Helens, Washington, USA. Plant Ecol. 219, 957-972. http://doi.org/10.1007/s11258-018-0849-8

Corona-Chavez, P., 2018. Las comunidades de la region del volcan Paricutin: recuerdo, olvido y proyectos para la memoria. Cie Nic 74, 135-160. http://doi.org/10.35830/cn.v0i74.405

Crisafulli, C.M., Swanson, F.J., Dale, V.H., 2005. Overview of ecological responses to the eruption of Mount St. Helens: 1980-2005, in: Dale, V.H., Swanson, F.J., Crisafulli, C.M. (Eds.), Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, pp. 287-299. http://doi.org/10.1007/0-387-28150-9_20https://doi.org/10.1007/0-387-28150-9_20
DOI

Curtis, J.T., McIntosh, R.P., 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32, 476-496. http://doi.org/10.2307/1931725

CutlerN.A.BelyeaL.R.DugmoreA.J.The spatiotemporal dynamics of a primary successionJ. Ecol.20089623124610.1111/j.1365-2745.2007.01344.x

Cutler, N.A., Belyea, L.R., Dugmore, A.J., 2008. The spatiotemporal dynamics of a primary succession. J. Ecol. 96, 231-246. http://doi.org/10.1111/j.1365-2745.2007.01344.x

Del Moral, R., Bliss, L.C., 1993. Mechanisms of primary succession: insights resulting from the eruption of Mount St Helens. Adv. Ecol. Res. 24, 1-66. http://doi.org/10.1016/S0065-2504(08)60040-9

Del Moral, R., Grishin, S.,Y 1999 Volcanic disturbances and ecosystem recovery, in: Walker. L.R. (Eds.), Ecosystems of disturbed ground. Elsevier, Amsterdam. https://www.elsevier.com/books/ecosystems-of-disturbed-ground/walker/978-0-444-82420-2 (accessed 4 April 2021)
Del Moral, R., Wood, D.M., Titus, J.H., 2005. Proximity, microsites, and biotic interactions during early succession, in: Dale, V.H., Swanson, F.J., Crisafulli, C.M. (Eds.), Ecological responses to the 1980 Eruption of Mount St. Helens. Springer, Berlin. http://doi.org/10.1007/0-387-28150-9_7https://doi.org/10.1007/0-387-28150-9_7
DOI

Deligne, N.I., Cashman, K.V., Roering, J.J., 2013. After the lava flow: the importance of external soil sources for plant colonization of recent lava flows in the central Oregon Cascades, USA. Geomorphology 202, 15-32. http://doi.org/10.1016/j.geomorph.2012.12.009

Eggler, W.A., 1963. Plant life of Paricutin volcano, Mexico, eight years after activity ceased. Am. Midl. Nat. 69(1), 38-68. http://doi.org/10.2307/2422843

Farjon, A., Perez de la Rosa, J.A., Styles, B.T., 1997. A field guide to the pines of Mexico and Central America. The Royal Botanical Garden, Kew, Richmond, Surrey
Foshag, W.F., Gonzalez, J., 1956. Birth and development of Paricutin volcano, Mexico. USDI Geological Survey Bulletin 965-D. http://doi.org/10.3133/b965Dhttps://doi.org/10.3133/b965D
DOI

Franco-Ramos, O., Vazquez-Selem, L.V., Stoffel, M., Cerano-Paredes, J., Villanueva-Diaz, J., 2019. Tree-rings based analysis of the 2001 pyroclastic flow and post-eruptive tree colonization on Popocatepetl volcano, Mexico. Catena 179, 149-159. http://doi.org/10.1016/j.catena.2019.04.004

Fregoso, A., Velazquez, A., Cortez, G., 2003. La vegetacion, sus componentes y analisis jerarquico del paisaje, in: Velazquez, A., Torres, A., Bocco, G. (Eds), Las ensenanzas de San Juan: investigacion participativa para el manejo integral de los recursos naturales. Instituto Nacional de Ecologia, Mexico City. https://www.ccmss.org.mx/wp-content/uploads/2014/09/Las_ensenanzas_de_San_Juan.pdf (accessed 4 April 2021)

Fule, P.Z., Covington, W.W., 1997. Fire regimes and forest structure in the Sierra Madre Occidental, Durango, Mexico. Acta Bot. Mex. 41, 43-79. http://doi.org/10.21829/abm41.1997.791

Garibotti, I.A., Pissolito, C.I., Villalba, R., 2011. Spatiotemporal pattern of primary succession in relation to meso-topographic gradients on recently deglaciated terrains in the Patagonian Andes. Arct. Antarct. Alp. Res. 43(4), 555-567. http://doi.org/10.1657/1938-4246-43.4.555

Gomez-Romero, M., Lindig-Cisneros, R., Galindo-Vallejo, S., 2006. Effect of tephra depth on vegetation development in areas affected by volcanism. Plant Ecol. 183, 207-213. http://doi.org/10.1007/s11258-005-9017-z

Google, 2019. Paricutin region, Michoacan, Mexico. 19°29′36″ N, -101°15′05″ W. Eye alt. 7.75 km, CNES/Airbus 2019. https://earth.google.com (accessed 1 April 2019)

Holle, M.J.M., Tsuyuzaki, S., 2018. The effects of shrub patch sizes on the colonization of pioneer plants on the volcano Mount Koma, northern Japan. Acta Oecol. 93, 48-55. http://doi.org/10.1016/j.actao.2018.10.009

Inbar, M., Lugo-Hubp, J., Villers-Ruiz, L., 1994. The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943-1990. Geomorphology 9(1), 57-76. http://doi.org/10.1016/0169-555X(94)90031-0

Juarez-Martinez, D.A., Rodriguez-Trejo, D.A., 2003. Efecto de los incendios en la regeneracion de Pinus oocarpa var. ochoterenae. Rev. Chapingo. Ser. Cie. For. Amb. 9(2), 125-130

https://hrcak.srce.hr/160869 (accessed 4 April 2021)]]>

Krauskopf, K.B., 1948. Lava movement at Paricutin volcano, Mexico. Geol. Soc. Am. Bull. 59(12), 1267-1284. http://doi.org/10.1130/0016-7606(1948)59[1267:LMAPVM]2.0.CO;2

Lindig-Cisneros, R., Galindo-Vallejo, S., Lara-Cabrera, S., 2006. Vegetation of tephra deposits 50 years after the end of the eruption of the Paricutin Volcano, Mexico. Southwest Nat. 51(4), 455-461. http://doi.org/10.1894/0038-4909(2006)51[455:VOTDYA]2.0.CO;2

McCaughey, W.W., Schmidt, W.C., Shearer, R.C., 1986. Seed dispersal characteristics of conifers in the inland mountain west, in: Shearer, R.C. (Eds.), Proceedings of the conifer tree seed in the inland mountain west symposium, Missoula, 1985. https://www.fs.fed.us/rm/pubs_exp_forests/coram/rmrs_1986_mccaughey_w001.pdf (accessed 4 April 2021)
Medina, C., 2003 La flora: Riqueza, diversidad y sus relaciones fitogeograficas, in: Velazquez, A, Torres, A., Bocco, G. (Eds.), Las ensenanzas de San Juan: investigacion participativa para el manejo integral de los recursos naturales, Instituto Nacional de Ecologia, Mexico City. https://www.ccmss.org.mx/wp-content/uploads/2014/09/Las_ensenanzas_de_San_Juan.pdf (accessed 4 April 2021)

Medina-Garcia, C., Guevara-Fefer, F., Martinez-Rodriguez, M.A., Silva-Saenz, P., Chavez-Carbajal, M.A., Garcia-Ruiz, I., 2000. Estudio floristico en el area de la comunidad indigena de Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Acta Bot. Mex. 52, 5-41. http://doi.org/10.21829/abm52.2000.853

National Oceanic and Atmospheric Administration, 2017. Southern Oscillation Index. https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/ (accessed 4 April 2021)

Pierson, T.C., 2007. Dating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA. Earth Surf. Proc. Land. 32, 811-831. http://doi.org/10.1002/esp.1445

Pioli, L., Erlund, E., Johnson, E., Cashman, K., Wallace, P., Rosi, M., Delgado-Granados, H., 2008. Explosive dynamics of violent Strombolian eruptions: the eruption of Paricutin Volcano 1943-1952 (Mexico). Earth Planet Sci. Lett. 271, 359-368. http://doi.org/10.1016/j.epsl.2008.04.026

Powell, D.C., 2000. Potential vegetation, disturbance, plant succession, and other aspects of forest ecology. USDA Forest Service Technical Publication F14-SO-TP-09-00
Powell, D.C., 2012. A stage is a stage is a stage…Or is it? Successional stages, structural stages, seral stages. USDA Forest Service White Paper F14-SO-WP-Silv-10

Quintero-Gradilla, S.D., Jardel-Pelaez, E.J., Cuevas-Guzman, R., Garcia-Oliva, F., Martinez-Yrizar, A., 2019. Cambio postincendio en la estructura y composicion del estrato arboreo y carga de combustibles en un bosque de Pinus douglasiana de Mexico. Madera Bosques 25(3), e2531888. http://doi.org/10.21829/myb.2019.2531888

R Core Team, 2017. The R Project for statistical computing. https://www.r-project.org/ (accessed 4 April 2021)

Rejmanek, M., Haagerova, R., Haager, J., 1982. Progress of plant succession on the Paricutin volcano: 25 years after activity ceased. Am. Midl. Nat. 108(1), 194-198. http://doi.org/10.2307/2425309

Robinson, G.R., Handel, S.N., 2000. Directing spatial patterns of recruitment during an experimental urban woodland reclamation. Ecol. Appl. 10, 174-188. http://doi.org/10.1890/1051-0761(2000)010[0174:DSPORD]2.0.CO;2

Saenz-Ceja, J.E., Perez-Salicrup, D.R., 2020. Fire regime disruption inferred from the age structure of two tropical conifer species, Mexico. Forests 11(11), 1193. http://doi.org/10.3390/f11111193

Salaorni, E., Stoffel, M., Tutubalina, O., Chernomorets, S., Seynova, I., Sorg, A., 2016. Dendrogeomorphic reconstruction of lahar activity and triggers: Shiveluch volcano, Kamchatka Peninsula, Russia. Bull. Volcanol. 79, 6. http://doi.org/10.1007/s00445-016-1094-4

Sheppard, P.R., Ort, M.H., Anderson, K.C., Elson, M.D., Vazquez-Selem, L., Clemens, A.W., Little, N.C., Speakman, R.J., 2008. Multiple dendrochronological signals indicate the eruption of Paricutin Volcano, Michoacan, Mexico. Tree Ring 64(2), 97-108. http://doi.org/10.3959/2008-3.1

Siebe, C., Bocco, G., Sanchez, J., Velazquez, A., 2003. Suelos: distribucion, caracteristicas y potencial de uso, in: Velazquez, A., Torres, A., Bocco, G. (Eds.), Las ensenanzas de San Juan: investigacion participativa para el manejo integral de los recursos naturales, Instituto Nacional de Ecologia, Mexico City. https://www.ccmss.org.mx/wp-content/uploads/2014/09/Las_ensenanzas_de_San_Juan.pdf (accessed 4 April 2021)
Speer, J.H., 2010. Fundamentals of tree ring research. The University of Arizona Press, Tucson. https://uapress.arizona.edu/book/fundamentals-of-tree-ring-research (accessed 4 April 2021)

Stahle, D.W., Burnette, D.J., Villanueva-Diaz, J., Heim Jr, R.R., Fye, F.K., Cerano-Paredes, J., Acuna-Soto, R., Cleaveland, M.K., 2012. Pacific and Atlantic influences on Mesoamerican climate over the past millennium. Clim. Dyn. 39, 1431-1446. http://doi.org/10.1007/s00382-011-1205-z

Stoffel, M., Bollschweiler, M., 2008. Tree-ring analysis in natural hazards research: an overview. Nat. Hazards Earth Syst. Sci. 8, 187-202. http://doi.org/10.5194/nhess-8-187-2008

Stokes, M.A., Smiley, T.I., 1996. An introduction to tree-ring dating. The University of Arizona Press, Tucson. https://uapress.arizona.edu/book/an-introduction-to-tree-ring-dating (accessed 4 April 2021)

Titus, J.H., Tsuyuzaki, S., 2003. Distribution of plants in relation to microplots on recent volcanic substrates on Mount Koma, Hokkaido, Japan. Ecol. Res. 18(1), 91-98. http://doi.org/10.1046/j.1440-1703.2003.00536.x

Vilmundardottir, O.K., Sigurmundsson, F.S., Pedersen, G.B.M., Munoz-Cobo, J., Kizel, F., Falco, N., Benediktsson, J.A., Gisladottir, G., 2018. Of mosses and men: plant succession, soil development and soil carbon accretion in the sub-Arctic volcanic landscape of Hekla, Iceland. Prog. Phys. Geog. 42(6), 765-791. http://doi.org/10.1177/0309133318798754

Wilcox, R.E., 1954. Petrology of Paricutin volcano, Mexico. USDI Geological Survey, Bulletin 965-C. http://doi.org/10.3133/b965Chttps://doi.org/10.3133/b965C
DOI
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Published: 25 February 2022
Issue date: February 2022

Copyright

© 2022 Beijing Forestry University.

Acknowledgements

The first author is grateful for the support of the Graduate Program in Biological Sciences at the Universidad Nacional Autónoma de Mexico, and the Mexican Council of Science and Technology (Conacyt) for the scholarship received to carry out graduate studies. The second author thanks the Undergraduate Program in Geosciences at the Escuela Nacional de Estudios Superiores (ENES), UNAM Campus Morelia. All the authors thank the authorities of the Caltzontzin Indigenous Community for the facilities granted for performing this study, and especially Jerónimo Ángel, Ignacio Cabrera, Luis Lara, and Ramón Guerrero for their support during the field sampling, as well as the Ecojardín at the Instituto de Investigaciones en Ecosistemas y Sustentabilidad for the space provided for the processing of dendrochronological samples. Finally, we thank Mary-Ann Hall for the editorial revision of the manuscript.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).

Return