Journal Home > Volume 9 , Issue 1
Background

The recent rise in temperature and shifting precipitation regimes threaten ecosystems around the globe to different degrees. Treelines are expected to respond to climate warming by shifting to higher elevations, but it is unclear whether they can track temperature changes. Here, we integrated high-resolution aerial imagery with local climatic and topographic characteristics to study the treeline dynamic from 1945 to 2015 on the semi-arid Mediterranean island of Crete, Greece.

Results

During the study period, the mean annual temperature at the treeline increased by 0.81 ​℃, while the average precipitation decreased by 170 ​mm. The treeline is characterized by a diffuse form, with trees growing on steep limestone slopes (>50°) and shallow soils. Moreover, the treeline elevation decreases with increasing distance from the coast and with aspect (south ​> ​north). Yet, we found no shift in the treeline over the past 70 years, despite an increase in temperature in all four study sites. However, the treeline elevation correlated strongly with topographic exposure to wind (R2 ​= ​0.74, p ​< ​0.001). Therefore, the temporal lag in treeline response to warming could be explained by a combination of topographic and microclimatic factors, such as the absence of a shelter effect and a decrease in moisture.

Conclusion

Although there was no treeline shift over the last 70 years, climate change has already started shifting the treeline altitudinal optimum. Consequently, the lack of climate-mediated migration at the treeline should raise concerns about the threats posed by warming, such as drought damages, and wildfire, especially in the Mediterranean region. Therefore, conservation management should discuss options and needs to support adaptive management.


menu
Abstract
Full text
Outline
About this article

No treeline shift despite climate change over the last 70 years

Show Author's information Mirela Beloiua,1( )Dimitris Poursanidisb,1( )Antonis TsakirakiscNektarios ChrysoulakisbSamuel HoffmannaPetros Lymberakisc,dAntonis BarniascDavid KienleaCarl Beierkuhnleina,e,f
Department of Biogeography, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
Remote Sensing Lab, Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, 100 N. Plastira Str., Vassilika Vouton, Heraklion, 70013, Greece
Samaria National Park, Management Body, Old National Road Chanion-Kissamou, Agioi Apostoloi, Chania, Crete, Greece
Natural History Museum of Crete, University of Crete, Knossou Av., 71409, Irakleio, Crete, Greece
GIB Department of Geography, University of Bayreuth, 95447, Bayreuth, Germany
BayCEER Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95448, Bayreuth, Germany

1 Considered dual first authors.

Abstract

Background

The recent rise in temperature and shifting precipitation regimes threaten ecosystems around the globe to different degrees. Treelines are expected to respond to climate warming by shifting to higher elevations, but it is unclear whether they can track temperature changes. Here, we integrated high-resolution aerial imagery with local climatic and topographic characteristics to study the treeline dynamic from 1945 to 2015 on the semi-arid Mediterranean island of Crete, Greece.

Results

During the study period, the mean annual temperature at the treeline increased by 0.81 ​℃, while the average precipitation decreased by 170 ​mm. The treeline is characterized by a diffuse form, with trees growing on steep limestone slopes (>50°) and shallow soils. Moreover, the treeline elevation decreases with increasing distance from the coast and with aspect (south ​> ​north). Yet, we found no shift in the treeline over the past 70 years, despite an increase in temperature in all four study sites. However, the treeline elevation correlated strongly with topographic exposure to wind (R2 ​= ​0.74, p ​< ​0.001). Therefore, the temporal lag in treeline response to warming could be explained by a combination of topographic and microclimatic factors, such as the absence of a shelter effect and a decrease in moisture.

Conclusion

Although there was no treeline shift over the last 70 years, climate change has already started shifting the treeline altitudinal optimum. Consequently, the lack of climate-mediated migration at the treeline should raise concerns about the threats posed by warming, such as drought damages, and wildfire, especially in the Mediterranean region. Therefore, conservation management should discuss options and needs to support adaptive management.

Keywords: Temperature, Precipitation, Climate change, Protected area, Forest dynamics, Mediterranean region, Aerial imagery, Continental island, High mountains

References(92)

Anadon-RosellA.TalaveraM.NinotJ.M.CarrilloE.BatlloriE.Seed production and dispersal limit treeline advance in the PyreneesJ. Veg. Sci.20203198199410.1111/jvs.12849

Anadon-Rosell, A., Talavera, M., Ninot, J.M., Carrillo, E., Batllori, E., 2020. Seed production and dispersal limit treeline advance in the Pyrenees. J. Veg. Sci. 31, 981-994

Baldi, P., Pedron, L., Hietala, A.M., La Porta, N., 2011. Cold tolerance in cypress (Cupressus sempervirens L.): a physiological and molecular study. Tree Genet. Genomes 7, 79-90

Batllori, E., Camarero, J.J., Ninot, J.M., Gutierrez, E., 2009. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecol. Biogeogr., 18, 460-472

Beloiu, M., Beierkuhnlein, C., 2019. Differences in the spatial structure of two Pinus cembra L. populations in the Carpathian Mountains. Forests 10, 326

BogaertR.V.HanecaK.HoogestegerJ.JonassonC.DapperM.D.CallaghanT.V.A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warmingJ. Biogeogr.20113890792110.1111/j.1365-2699.2010.02453.x

Bogaert, R.V., Haneca, K., Hoogesteger, J., Jonasson, C., Dapper, M.D., Callaghan, T.V., 2011. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J. Biogeogr. 38, 907-921

Bohner, J., Antonic, O., 2009. Land-surface parameters specific to topo-climatology. Developments in Soil Science, Volume 33, Elsevier, Amsterdam, pp. 195-226

Bolton, D.K., Coops, N.C., Hermosilla, T., Wulder, M.A., White, J.C., 2018. Evidence of vegetation greening at alpine treeline ecotones: three decades of Landsat spectral trends informed by lidar-derived vertical structure. Environ. Res. Lett. 13, 84022

Boydak, M., 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten. - a review. Plant Ecol. 171, 153-163

Brofas, G., Karetsos, G., Dimopoulos, P., Tsagari, C., 2006. The natural environment of Cupressus sempervirens in Greece as a basis for its use in the Mediterranean region. Land Degrad. Dev. 17, 645-659

Camarero, J.J., Gazol, A., Sanchez-Salguero, R., Fajardo, A., McIntire, E.J.B., Gutierrez, E., Batllori, E., Boudreau, S., Carrer, M., Diez, J., Dufour-Tremblay, G., Gaire, N.P., Hofgaard, A., Jomelli, V., Kirdyanov, A.V., Levesque, E., Liang, E., Linares, J.C., Mathisen, I.E., Moiseev, P.A., Sanguesa-Barreda, G., Shrestha, K.B., Toivonen, J.M., Tutubalina, O.V., Wilmking, M., 2021. Global fading of the temperature-growth coupling at alpine and polar treelines. Glob. Change Biol. 27, 1879-1889

Camarero, J.J., Gutierrez, E., 2004. Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Climatic Change 63, 181-200

Chen, I.-C., Hill, J.K., Ohlemuller, R., Roy, D.B., Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-1026

Chen, Y., Lu, D., Luo, G., Huang, J., 2015. Detection of vegetation abundance change in the alpine tree line using multitemporal Landsat Thematic Mapper imagery. Int. J. Remote Sens. 36, 4683-4701

Copernicus Land Monitoring Service, 2021. Unprecedented mobilisation of Copernicus EMS during the 2021 Mediterranean Wildfire crisis. https://www.copernicus.eu/ (accessed 26 October 2021)

Coulthard, B.L., Touchan, R., Anchukaitis, K.J., Meko, D.M., Sivrikaya, F., 2017. Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean. Environ. Res. Lett. 12, 84008

Cudlin, P., Cudlin, P., Cudlin, P., Tognetti, R., Malis, F., Alados, C., Bebi, P., Grunewald, K., Zhiyanski, M., Andonowski, V., La Porta, N., Bratanova-Doncheva, S., Kachaunova, E., Edwards-Jonasova, M., Ninot, J., Rigling, A., Hofgaard, A., Hlasny, T., Skalak, P., Wielgolaski, F., 2017. Drivers of treeline shift in different European mountains. Clim. Res. 73, 135-150

DullingerS.DirnböckT.GrabherrG.Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibilityJ. Ecol.200492241252

Dullinger, S., Dirnbock, T., Grabherr, G., 2004. Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J. Ecol. 92, 241-252

Garcia, R.A., Cabeza, M., Rahbek, C., Araujo, M.B., 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579

Gatti, R.C., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G., Liang, J., 2019. Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Sci. Rep. 9, 7678

Gehrig-FaselJ.GuisanA.ZimmermannN.E.Tree line shifts in the Swiss Alps: climate change or land abandonment?J. Veg. Sci.200718571582

Gehrig-Fasel, J., Guisan, A., Zimmermann, N.E., 2007. Tree line shifts in the Swiss Alps: climate change or land abandonment? J. Veg. Sci. 18, 571-582

Giorgi, F., Lionello, P., 2008. Climate change projections for the Mediterranean region. Global Planet Change 63, 90-104

GrittiE.S.SmithB.SykesM.T.Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant speciesJ. Biogeogr.20063314515710.1111/j.1365-2699.2005.01377.x

Gritti, E.S., Smith, B., Sykes, M.T., 2006. Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J. Biogeogr. 33, 145-157

HanssonA.DarguschP.ShulmeisterJ.A review of modern treeline migration, the factors controlling it and the implications for carbon storageJ. Mt. Sci.20211829130610.1007/s11629-020-6221-1

Hansson, A., Dargusch, P., Shulmeister, J., 2021. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 18, 291-306

Harsch, M.A., Bader, M.Y., 2011. Treeline form - a potential key to understanding treeline dynamics. Global Ecol. Biogeogr. 20, 582-596

Harsch, M.A., Hulme, P.E., McGlone, M.S., Duncan, R.P., 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040-1049

Harter, D.E.V., Irl, S.D.H., Seo, B., Steinbauer, M.J., Gillespie, R., Triantis, K.A., Fernandez-Palacios, J.-M., Beierkuhnlein, C., 2015. Impacts of global climate change on the floras of oceanic islands - Projections, implications and current knowledge. Perspect Plant Ecol. 17, 160-183

Hof, C., Levinsky, I., Araujo, M.B., Rahbek, C., 2011. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987-2990

Hoffmann, S., Beierkuhnlein, C., 2020. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496-1509

Hoffmann, S., Beierkuhnlein, C., Field, R., Provenzale, A., Chiarucci, A., 2018a. Uniqueness of protected areas for conservation strategies in the European Union. Sci. Rep. 8, 6445

Hoffmann, S., Irl, S.D.H., Beierkuhnlein, C., 2019. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787

Hoffmann, S., Schmitt, T.M., Chiarucci, A., Irl, S.D.H., Rocchini, D., Vetaas, O.R., Tanase, M.A., Mermoz, S., Bouvet, A., Beierkuhnlein, C., 2018b. Remote sensing of β-diversity: evidence from plant communities in a semi-natural system. Appl. Veg. Sci. 22, 13-26

Holtmeier, F.-K., 2009. Mountain timberlines: ecology, patchiness, and dynamics. Springer, Dordrecht

Holtmeier, F.-K., Broll, G., 2012. Landform influences on treeline patchiness and dynamics in a changing climate. Phys. Geogr. 33, 403-437

Holtmeier, F.K., Broll, G.E., 2007. Treeline advance - driving processes and adverse factors. Landscape Online 1, 1-33

Irl, S.D.H., Anthelme, F., Harter, D.E.V., Jentsch, A., Lotter, E., Steinbauer, M.J., Beierkuhnlein, C., 2016. Patterns of island treeline elevation - a global perspective. Ecography 39, 427-436

Jentsch, A., Beierkuhnlein, C., 2003. Global climate change and local disturbance regimes as interacting drivers for shifting altitudinal vegetation patterns. Erdkunde 57, 216-231

Jobbagy, E.G., Jackson, R.B., 2000. Global controls of forest line elevation in the northern and southern hemispheres. Global Ecol. Biogeogr. 9, 253-268

Karger, D.N., Conrad, O., Bohner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth’s land surface areas. Sci, Data 4, 170122

Karger, D.N., Conrad, O., Bohner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2018. Data from: climatologies at high resolution for the earth’s land surface areas. 7266827510 bytes

Karger, D.N., Kessler, M., Conrad, O., Weigelt, P., Kreft, H., Konig, C., Zimmermann, N.E., 2019. Why tree lines are lower on islands-Climatic and biogeographic effects hold the answer. Global Ecol. Biogeogr. 28, 839-850. http://doi.org/10.1111/geb.12897

Kazakis, G., Ghosn, D., Vogiatzakis, I.N., Papanastasis, V.P., 2007. Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodivers. Conserv. 16, 1603-1615

Kidane, Y.O., Steinbauer, M.J., Beierkuhnlein, C., 2019. Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecol. Conserv. 19, e00670

Kopecky, M., Macek, M., Wild, J., 2021. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Sci. Total Environ. 757, 143785

Korner, C., 2012. Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science & Business Media, Basel

Korner, C., 2021. ‘Fading of the temperature-growth coupling’ in treeline trees reflects a conceptual bias. Glob. Change Biol. 27, 3951-3952

KörnerC.PaulsenJ.A world-wide study of high altitude treeline temperaturesJ. Biogeogr.20043171373210.1111/j.1365-2699.2003.01043.x

Korner, C., Paulsen, J., 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713-732

Ktimatologio, S.A., 2016. ΕΛΛΗΝΙΚΟ ΚΤΗΜΑΤΟΛΟΓΙΟ

Lamprecht, A., Semenchuk, P.R., Steinbauer, K., Winkler, M., Pauli, H., 2018. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol. 220, 447-459

Leberger, R., Rosa, I.M.D., Guerra, C.A., Wolf, F., Pereira, H.M., 2020. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv. 241, 108299. https://doi.org/10.1016/j.biocon.2019.108299

Leuschner, C., 1996. Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: elevation, structure and floristics. Vegetatio 123, 193-206

Lev-Yadun, S., 1995. Living serotinous cones in Cupressus sempervirens. Int. J. Plant Sci. 156, 50-54

Lu, X., Liang, E., Wang, Y., Babst, F., Camarero, J.J., 2021. Mountain treelines climb slowly despite rapid climate warming. Global Ecol. Biogeogr. 30, 305-315

Macias-Fauria, M., Johnson, E.A., 2013. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. PNAS 110, 8117-8122

Mathisen, I.E., Mikheeva, A., Tutubalina, O.V., Aune, S., Hofgaard, A., 2014. Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl. Veg. Sci. 17, 6-16

McIntireE.J.B.PiperF.I.FajardoA.Wind exposure and light exposure, more than elevation-related temperature, limit tree line seedling abundance on three continentsJ. Ecol.20161041379139010.1111/1365-2745.12599

McIntire, E.J.B., Piper, F.I., Fajardo, A., 2016. Wind exposure and light exposure, more than elevation-related temperature, limit tree line seedling abundance on three continents. J. Ecol. 104, 1379-1390

Moyes, A.B., Germino, M.J., Kueppers, L.M., 2015. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions. New Phytol. 207, 1005-1014

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858

Nastos, P.T., Bleta, A.G., Matsangouras, I.T., 2017. Human thermal perception related to Fohn winds due to Saharan dust outbreaks in Crete Island, Greece. Theor. Appl. Climatol. 128, 635-647

Nastos, P.T., Politi, N., Kapsomenakis, J., 2013. Spatial and temporal variability of the Aridity Index in Greece. Atmos Res. 119, 140-152

NeuschulzE.L.MergesD.BollmannK.GugerliF.Böhning-GaeseK.Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine treeJ. Ecol.201810694895910.1111/1365-2745.12818

Neuschulz, E.L., Merges, D., Bollmann, K., Gugerli, F., Bohning-Gaese, K., 2018. Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. J. Ecol. 106, 948-959

Nita, M.D., Munteanu, C., Gutman, G., Abrudan, I.V., Radeloff, V.C., 2018. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote Sens. Environ. 204, 322-332

NOAA/NCDC, 2019. Climate Data Online - National Climatic Data Center - NOAA

Ohmura, A., 2012. Enhanced temperature variability in high-altitude climate change. Theor. Appl. Climatol. 110, 499-508

PapanastasisV.P.Traditional vs contemporary management of Mediterranean vegetation: the case of the island of CreteJ. Biol. Res.200413946

Papanastasis, V.P., 2004. Traditional vs contemporary management of Mediterranean vegetation: the case of the island of Crete. J. Biol. Res. 1, 39-46

PaulsenJ.KörnerC.GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effectJ. Veg. Sci.20011281782410.2307/3236869

Paulsen, J., Korner, C., 2001. GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J. Veg. Sci. 12, 817-824

Penuelas, J., Sardans, J., 2021. Global change and forest disturbances in the Mediterranean basin: breakthroughs, knowledge gaps, and recommendations. Forests 12, 603

Prezerakos, N.G., 1994. Climatological characteristics of very low humidity in Northern Crete due to downslope southerly winds. Int. J. Climatol. 14, 933-946

R Core Team, 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

Rees, W.G., Hofgaard, A., Boudreau, S., Cairns, D.M., Harper, K., Mamet, S., Mathisen, I., Swirad, Z., Tutubalina, O., 2020. Is subarctic forest advance able to keep pace with climate change? Glob. Change Biol. 26, 3965-3977

Rendenieks, Z., Nita, M.D., Nikodemus, O., Radeloff, V.C., 2020. Half a century of forest cover change along the Latvian-Russian border captured by object-based image analysis of Corona and Landsat TM/OLI data. Remote Sens. Environ. 249, 112010

Ripple, W.J., Wolf, C., Newsome, T.M., Barnard, P., Moomaw, W.R., 2020. World scientists’ warning of a climate emergency. BioScience 70, 8-12

Riva, M.J., Daliakopoulos, I.N., Eckert, S., Hodel, E., Liniger, H., 2017. Assessment of land degradation in Mediterranean forests and grazing lands using a landscape unit approach and the normalized difference vegetation index. Appl. Geogr. 86, 8-21

Salzer, M.W., Larson, E.R., Bunn, A.G., Hughes, M.K., 2014. Changing climate response in near-treeline bristlecone pine with elevation and aspect. Environ. Res. Lett. 9, 114007

Scherrer, D., Korner, C., 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602-2613

Seneviratne, S.I., Donat, M.G., Mueller, B., Alexander, L.V., 2014. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161-163

Shakesby, R.A., 2011. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Sci. Rev. 105, 71-100

Sigdel, S.R., Pandey, J., Liang, E., Muhammad, S., Babst, F., Leavitt, S.W., Shen, M., Zhu, H., Salerno, F., Piao, S., Camarero, J.J., Penuelas, J., 2021. No benefits from warming even for subnival vegetation in the central Himalayas. Sci. Bull. 66, 1825-1829

Sigdel, S.R., Wang, Y., Camarero, J.J., Zhu, H., Liang, E., Penuelas, J., 2018. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Change Biol. 24, 5549-5559

SpanosI.PlatisP.MeliadisI.TsiontisA.A review on the ecology and management of the Samaria Gorge, a Greek biosphere reserveJ. Geogr. Reg. Plann.200811933

Spanos, I., Platis, P., Meliadis, I., Tsiontis, A., 2008. A review on the ecology and management of the Samaria Gorge, a Greek biosphere reserve. J. Geogr. Reg. Plan. 1, 19-33

Steinbauer, M.J., Field, R., Grytnes, J.-A., Trigas, P., Ah-Peng, C., Attorre, F., Birks, H.J.B., Borges, P.A.V., Cardoso, P., Chou, C.-H., Sanctis, M.D., de Sequeira, M.M., Duarte, M.C., Elias, R.B., Fernandez-Palacios, J.M., Gabriel, R., Gereau, R.E., Gillespie, R.G., Greimler, J., Harter, D.E.V., Huang, T.-J., Irl, S.D.H., Jeanmonod, D., Jentsch, A., Jump, A.S., Kueffer, C., Nogue, S., Otto, R., Price, J., Romeiras, M.M., Strasberg, D., Stuessy, T., Svenning, J.-C., Vetaas, O.R., Beierkuhnlein, C., 2016. Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecol. Biogeogr. 25, 1097-1107

Steinbauer, M.J., Irl, S.D.H., Beierkuhnlein, C., 2013. Elevation-driven ecological isolation promotes diversification on Mediterranean islands. Acta Oecol. 47, 52-56

Sutton, R.T., Dong, B., Gregory, J.M., 2007. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34, L02701

Suwal, M.K., Shrestha, K.B., Guragain, L., Shakya, R., Shrestha, K., Bhuju, D.R., Vetaas, O.R., 2016. Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies spectabilis (D. Don) Spach). Plant Ecol. 217, 993-1002

SvenningJ.-C.SkovF.The relative roles of environment and history as controls of tree species composition and richness in EuropeJ. Biogeogr.2005321019103310.1111/j.1365-2699.2005.01219.x

Svenning, J.-C., Skov, F., 2005. The relative roles of environment and history as controls of tree species composition and richness in Europe. J. Biogeogr. 32, 1019-1033

TrotsiukV.BabstF.GrossiordC.GesslerA.ForresterD.I.BuchmannN.SchaubM.EugsterW.Tree growth in Switzerland is increasingly constrained by rising evaporative demandJ. Ecol.20211092981299010.1111/1365-2745.13712

Trotsiuk, V., Babst, F., Grossiord, C., Gessler, A., Forrester, D.I., Buchmann, N., Schaub, M., Eugster, W., 2021. Tree growth in Switzerland is increasingly constrained by rising evaporative demand. J. Ecol. 109, 2981-2990

Venalainen, A., Korhonen, N., Hyvarinen, O., Koutsias, N., Xystrakis, F., Urbieta, I.R., Moreno, J.M., 2014. Temporal variations and change in forest fire danger in Europe for 1960-2012. Nat. Hazard Earth Sys. 14, 1477-1490

VitaliA.UrbinatiC.WeisbergP.J.UrzaA.K.GarbarinoM.Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy)J. Veg. Sci.20182918919910.1111/jvs.12598

Vitali, A., Urbinati, C., Weisberg, P.J., Urza, A.K., Garbarino, M., 2018. Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy). J. Veg. Sci. 29, 189-199

Vitasse, Y., Ursenbacher, S., Klein, G., Bohnenstengel, T., Chittaro, Y., Delestrade, A., Monnerat, C., Rebetez, M., Rixen, C., Strebel, N., Schmidt, B.R., Wipf, S., Wohlgemuth, T., Yoccoz, N.G., Lenoir, J., 2021. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 96, 1816-1835

Vogiatzakis, I.N., Griffiths, G.H., Mannion, A.M., 2003. Environmental factors and vegetation composition, Lefka Ori massif, Crete, S. Aegean. Global Ecol. Biogeogr. 12, 131-146

Vogiatzakis, I.N., Mannion, A.M., Sarris, D., 2016. Mediterranean island biodiversity and climate change: the last 10,000 years and the future. Biodivers. Conserv. 25, 2597-2627

Zhu, K., Woodall, C.W., Clark, J.S., 2012. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042-1052

Zindros, A., Radoglou, K., Milios, E., Kitikidou, K., 2020. Tree line shift in the Olympus Mountain (Greece) and climate change. Forests 11, 985

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Published: 25 February 2022
Issue date: February 2022

Copyright

© 2022 Beijing Forestry University.

Acknowledgements

We acknowledge support from the ECOPOTENTIAL project-EU Horizon 2020 research and innovation program, grant agreement no. 641762.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).

Return