186
Views
12
Downloads
4
Crossref
4
WoS
5
Scopus
0
CSCD
The recent rise in temperature and shifting precipitation regimes threaten ecosystems around the globe to different degrees. Treelines are expected to respond to climate warming by shifting to higher elevations, but it is unclear whether they can track temperature changes. Here, we integrated high-resolution aerial imagery with local climatic and topographic characteristics to study the treeline dynamic from 1945 to 2015 on the semi-arid Mediterranean island of Crete, Greece.
During the study period, the mean annual temperature at the treeline increased by 0.81 ℃, while the average precipitation decreased by 170 mm. The treeline is characterized by a diffuse form, with trees growing on steep limestone slopes (>50°) and shallow soils. Moreover, the treeline elevation decreases with increasing distance from the coast and with aspect (south > north). Yet, we found no shift in the treeline over the past 70 years, despite an increase in temperature in all four study sites. However, the treeline elevation correlated strongly with topographic exposure to wind (R2 = 0.74, p < 0.001). Therefore, the temporal lag in treeline response to warming could be explained by a combination of topographic and microclimatic factors, such as the absence of a shelter effect and a decrease in moisture.
Although there was no treeline shift over the last 70 years, climate change has already started shifting the treeline altitudinal optimum. Consequently, the lack of climate-mediated migration at the treeline should raise concerns about the threats posed by warming, such as drought damages, and wildfire, especially in the Mediterranean region. Therefore, conservation management should discuss options and needs to support adaptive management.
The recent rise in temperature and shifting precipitation regimes threaten ecosystems around the globe to different degrees. Treelines are expected to respond to climate warming by shifting to higher elevations, but it is unclear whether they can track temperature changes. Here, we integrated high-resolution aerial imagery with local climatic and topographic characteristics to study the treeline dynamic from 1945 to 2015 on the semi-arid Mediterranean island of Crete, Greece.
During the study period, the mean annual temperature at the treeline increased by 0.81 ℃, while the average precipitation decreased by 170 mm. The treeline is characterized by a diffuse form, with trees growing on steep limestone slopes (>50°) and shallow soils. Moreover, the treeline elevation decreases with increasing distance from the coast and with aspect (south > north). Yet, we found no shift in the treeline over the past 70 years, despite an increase in temperature in all four study sites. However, the treeline elevation correlated strongly with topographic exposure to wind (R2 = 0.74, p < 0.001). Therefore, the temporal lag in treeline response to warming could be explained by a combination of topographic and microclimatic factors, such as the absence of a shelter effect and a decrease in moisture.
Although there was no treeline shift over the last 70 years, climate change has already started shifting the treeline altitudinal optimum. Consequently, the lack of climate-mediated migration at the treeline should raise concerns about the threats posed by warming, such as drought damages, and wildfire, especially in the Mediterranean region. Therefore, conservation management should discuss options and needs to support adaptive management.
Anadon-Rosell, A., Talavera, M., Ninot, J.M., Carrillo, E., Batllori, E., 2020. Seed production and dispersal limit treeline advance in the Pyrenees. J. Veg. Sci. 31, 981-994
Baldi, P., Pedron, L., Hietala, A.M., La Porta, N., 2011. Cold tolerance in cypress (Cupressus sempervirens L.): a physiological and molecular study. Tree Genet. Genomes 7, 79-90
Batllori, E., Camarero, J.J., Ninot, J.M., Gutierrez, E., 2009. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecol. Biogeogr., 18, 460-472
Beloiu, M., Beierkuhnlein, C., 2019. Differences in the spatial structure of two Pinus cembra L. populations in the Carpathian Mountains. Forests 10, 326
Bogaert, R.V., Haneca, K., Hoogesteger, J., Jonasson, C., Dapper, M.D., Callaghan, T.V., 2011. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J. Biogeogr. 38, 907-921
Bohner, J., Antonic, O., 2009. Land-surface parameters specific to topo-climatology. Developments in Soil Science, Volume 33, Elsevier, Amsterdam, pp. 195-226
Bolton, D.K., Coops, N.C., Hermosilla, T., Wulder, M.A., White, J.C., 2018. Evidence of vegetation greening at alpine treeline ecotones: three decades of Landsat spectral trends informed by lidar-derived vertical structure. Environ. Res. Lett. 13, 84022
Boydak, M., 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten. - a review. Plant Ecol. 171, 153-163
Brofas, G., Karetsos, G., Dimopoulos, P., Tsagari, C., 2006. The natural environment of Cupressus sempervirens in Greece as a basis for its use in the Mediterranean region. Land Degrad. Dev. 17, 645-659
Camarero, J.J., Gazol, A., Sanchez-Salguero, R., Fajardo, A., McIntire, E.J.B., Gutierrez, E., Batllori, E., Boudreau, S., Carrer, M., Diez, J., Dufour-Tremblay, G., Gaire, N.P., Hofgaard, A., Jomelli, V., Kirdyanov, A.V., Levesque, E., Liang, E., Linares, J.C., Mathisen, I.E., Moiseev, P.A., Sanguesa-Barreda, G., Shrestha, K.B., Toivonen, J.M., Tutubalina, O.V., Wilmking, M., 2021. Global fading of the temperature-growth coupling at alpine and polar treelines. Glob. Change Biol. 27, 1879-1889
Camarero, J.J., Gutierrez, E., 2004. Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Climatic Change 63, 181-200
Chen, I.-C., Hill, J.K., Ohlemuller, R., Roy, D.B., Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-1026
Chen, Y., Lu, D., Luo, G., Huang, J., 2015. Detection of vegetation abundance change in the alpine tree line using multitemporal Landsat Thematic Mapper imagery. Int. J. Remote Sens. 36, 4683-4701
Coulthard, B.L., Touchan, R., Anchukaitis, K.J., Meko, D.M., Sivrikaya, F., 2017. Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean. Environ. Res. Lett. 12, 84008
Cudlin, P., Cudlin, P., Cudlin, P., Tognetti, R., Malis, F., Alados, C., Bebi, P., Grunewald, K., Zhiyanski, M., Andonowski, V., La Porta, N., Bratanova-Doncheva, S., Kachaunova, E., Edwards-Jonasova, M., Ninot, J., Rigling, A., Hofgaard, A., Hlasny, T., Skalak, P., Wielgolaski, F., 2017. Drivers of treeline shift in different European mountains. Clim. Res. 73, 135-150
Dullinger, S., Dirnbock, T., Grabherr, G., 2004. Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J. Ecol. 92, 241-252
Garcia, R.A., Cabeza, M., Rahbek, C., Araujo, M.B., 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579
Gatti, R.C., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G., Liang, J., 2019. Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Sci. Rep. 9, 7678
Gehrig-Fasel, J., Guisan, A., Zimmermann, N.E., 2007. Tree line shifts in the Swiss Alps: climate change or land abandonment? J. Veg. Sci. 18, 571-582
Giorgi, F., Lionello, P., 2008. Climate change projections for the Mediterranean region. Global Planet Change 63, 90-104
Gritti, E.S., Smith, B., Sykes, M.T., 2006. Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J. Biogeogr. 33, 145-157
Hansson, A., Dargusch, P., Shulmeister, J., 2021. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 18, 291-306
Harsch, M.A., Bader, M.Y., 2011. Treeline form - a potential key to understanding treeline dynamics. Global Ecol. Biogeogr. 20, 582-596
Harsch, M.A., Hulme, P.E., McGlone, M.S., Duncan, R.P., 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040-1049
Harter, D.E.V., Irl, S.D.H., Seo, B., Steinbauer, M.J., Gillespie, R., Triantis, K.A., Fernandez-Palacios, J.-M., Beierkuhnlein, C., 2015. Impacts of global climate change on the floras of oceanic islands - Projections, implications and current knowledge. Perspect Plant Ecol. 17, 160-183
Hof, C., Levinsky, I., Araujo, M.B., Rahbek, C., 2011. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987-2990
Hoffmann, S., Beierkuhnlein, C., 2020. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496-1509
Hoffmann, S., Beierkuhnlein, C., Field, R., Provenzale, A., Chiarucci, A., 2018a. Uniqueness of protected areas for conservation strategies in the European Union. Sci. Rep. 8, 6445
Hoffmann, S., Irl, S.D.H., Beierkuhnlein, C., 2019. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787
Hoffmann, S., Schmitt, T.M., Chiarucci, A., Irl, S.D.H., Rocchini, D., Vetaas, O.R., Tanase, M.A., Mermoz, S., Bouvet, A., Beierkuhnlein, C., 2018b. Remote sensing of β-diversity: evidence from plant communities in a semi-natural system. Appl. Veg. Sci. 22, 13-26
Holtmeier, F.-K., Broll, G., 2012. Landform influences on treeline patchiness and dynamics in a changing climate. Phys. Geogr. 33, 403-437
Holtmeier, F.K., Broll, G.E., 2007. Treeline advance - driving processes and adverse factors. Landscape Online 1, 1-33
Irl, S.D.H., Anthelme, F., Harter, D.E.V., Jentsch, A., Lotter, E., Steinbauer, M.J., Beierkuhnlein, C., 2016. Patterns of island treeline elevation - a global perspective. Ecography 39, 427-436
Jentsch, A., Beierkuhnlein, C., 2003. Global climate change and local disturbance regimes as interacting drivers for shifting altitudinal vegetation patterns. Erdkunde 57, 216-231
Jobbagy, E.G., Jackson, R.B., 2000. Global controls of forest line elevation in the northern and southern hemispheres. Global Ecol. Biogeogr. 9, 253-268
Karger, D.N., Conrad, O., Bohner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth’s land surface areas. Sci, Data 4, 170122
Karger, D.N., Kessler, M., Conrad, O., Weigelt, P., Kreft, H., Konig, C., Zimmermann, N.E., 2019. Why tree lines are lower on islands-Climatic and biogeographic effects hold the answer. Global Ecol. Biogeogr. 28, 839-850. http://doi.org/10.1111/geb.12897
Kazakis, G., Ghosn, D., Vogiatzakis, I.N., Papanastasis, V.P., 2007. Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodivers. Conserv. 16, 1603-1615
Kidane, Y.O., Steinbauer, M.J., Beierkuhnlein, C., 2019. Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecol. Conserv. 19, e00670
Kopecky, M., Macek, M., Wild, J., 2021. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Sci. Total Environ. 757, 143785
Korner, C., 2021. ‘Fading of the temperature-growth coupling’ in treeline trees reflects a conceptual bias. Glob. Change Biol. 27, 3951-3952
Korner, C., Paulsen, J., 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713-732
Lamprecht, A., Semenchuk, P.R., Steinbauer, K., Winkler, M., Pauli, H., 2018. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol. 220, 447-459
Leberger, R., Rosa, I.M.D., Guerra, C.A., Wolf, F., Pereira, H.M., 2020. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv. 241, 108299. https://doi.org/10.1016/j.biocon.2019.108299
Leuschner, C., 1996. Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: elevation, structure and floristics. Vegetatio 123, 193-206
Lev-Yadun, S., 1995. Living serotinous cones in Cupressus sempervirens. Int. J. Plant Sci. 156, 50-54
Lu, X., Liang, E., Wang, Y., Babst, F., Camarero, J.J., 2021. Mountain treelines climb slowly despite rapid climate warming. Global Ecol. Biogeogr. 30, 305-315
Macias-Fauria, M., Johnson, E.A., 2013. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. PNAS 110, 8117-8122
Mathisen, I.E., Mikheeva, A., Tutubalina, O.V., Aune, S., Hofgaard, A., 2014. Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl. Veg. Sci. 17, 6-16
McIntire, E.J.B., Piper, F.I., Fajardo, A., 2016. Wind exposure and light exposure, more than elevation-related temperature, limit tree line seedling abundance on three continents. J. Ecol. 104, 1379-1390
Moyes, A.B., Germino, M.J., Kueppers, L.M., 2015. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions. New Phytol. 207, 1005-1014
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858
Nastos, P.T., Bleta, A.G., Matsangouras, I.T., 2017. Human thermal perception related to Fohn winds due to Saharan dust outbreaks in Crete Island, Greece. Theor. Appl. Climatol. 128, 635-647
Nastos, P.T., Politi, N., Kapsomenakis, J., 2013. Spatial and temporal variability of the Aridity Index in Greece. Atmos Res. 119, 140-152
Neuschulz, E.L., Merges, D., Bollmann, K., Gugerli, F., Bohning-Gaese, K., 2018. Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. J. Ecol. 106, 948-959
Nita, M.D., Munteanu, C., Gutman, G., Abrudan, I.V., Radeloff, V.C., 2018. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote Sens. Environ. 204, 322-332
Ohmura, A., 2012. Enhanced temperature variability in high-altitude climate change. Theor. Appl. Climatol. 110, 499-508
Papanastasis, V.P., 2004. Traditional vs contemporary management of Mediterranean vegetation: the case of the island of Crete. J. Biol. Res. 1, 39-46
Paulsen, J., Korner, C., 2001. GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J. Veg. Sci. 12, 817-824
Penuelas, J., Sardans, J., 2021. Global change and forest disturbances in the Mediterranean basin: breakthroughs, knowledge gaps, and recommendations. Forests 12, 603
Prezerakos, N.G., 1994. Climatological characteristics of very low humidity in Northern Crete due to downslope southerly winds. Int. J. Climatol. 14, 933-946
Rees, W.G., Hofgaard, A., Boudreau, S., Cairns, D.M., Harper, K., Mamet, S., Mathisen, I., Swirad, Z., Tutubalina, O., 2020. Is subarctic forest advance able to keep pace with climate change? Glob. Change Biol. 26, 3965-3977
Rendenieks, Z., Nita, M.D., Nikodemus, O., Radeloff, V.C., 2020. Half a century of forest cover change along the Latvian-Russian border captured by object-based image analysis of Corona and Landsat TM/OLI data. Remote Sens. Environ. 249, 112010
Ripple, W.J., Wolf, C., Newsome, T.M., Barnard, P., Moomaw, W.R., 2020. World scientists’ warning of a climate emergency. BioScience 70, 8-12
Riva, M.J., Daliakopoulos, I.N., Eckert, S., Hodel, E., Liniger, H., 2017. Assessment of land degradation in Mediterranean forests and grazing lands using a landscape unit approach and the normalized difference vegetation index. Appl. Geogr. 86, 8-21
Salzer, M.W., Larson, E.R., Bunn, A.G., Hughes, M.K., 2014. Changing climate response in near-treeline bristlecone pine with elevation and aspect. Environ. Res. Lett. 9, 114007
Scherrer, D., Korner, C., 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602-2613
Seneviratne, S.I., Donat, M.G., Mueller, B., Alexander, L.V., 2014. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161-163
Shakesby, R.A., 2011. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Sci. Rev. 105, 71-100
Sigdel, S.R., Pandey, J., Liang, E., Muhammad, S., Babst, F., Leavitt, S.W., Shen, M., Zhu, H., Salerno, F., Piao, S., Camarero, J.J., Penuelas, J., 2021. No benefits from warming even for subnival vegetation in the central Himalayas. Sci. Bull. 66, 1825-1829
Sigdel, S.R., Wang, Y., Camarero, J.J., Zhu, H., Liang, E., Penuelas, J., 2018. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Change Biol. 24, 5549-5559
Spanos, I., Platis, P., Meliadis, I., Tsiontis, A., 2008. A review on the ecology and management of the Samaria Gorge, a Greek biosphere reserve. J. Geogr. Reg. Plan. 1, 19-33
Steinbauer, M.J., Field, R., Grytnes, J.-A., Trigas, P., Ah-Peng, C., Attorre, F., Birks, H.J.B., Borges, P.A.V., Cardoso, P., Chou, C.-H., Sanctis, M.D., de Sequeira, M.M., Duarte, M.C., Elias, R.B., Fernandez-Palacios, J.M., Gabriel, R., Gereau, R.E., Gillespie, R.G., Greimler, J., Harter, D.E.V., Huang, T.-J., Irl, S.D.H., Jeanmonod, D., Jentsch, A., Jump, A.S., Kueffer, C., Nogue, S., Otto, R., Price, J., Romeiras, M.M., Strasberg, D., Stuessy, T., Svenning, J.-C., Vetaas, O.R., Beierkuhnlein, C., 2016. Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecol. Biogeogr. 25, 1097-1107
Steinbauer, M.J., Irl, S.D.H., Beierkuhnlein, C., 2013. Elevation-driven ecological isolation promotes diversification on Mediterranean islands. Acta Oecol. 47, 52-56
Sutton, R.T., Dong, B., Gregory, J.M., 2007. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34, L02701
Suwal, M.K., Shrestha, K.B., Guragain, L., Shakya, R., Shrestha, K., Bhuju, D.R., Vetaas, O.R., 2016. Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies spectabilis (D. Don) Spach). Plant Ecol. 217, 993-1002
Svenning, J.-C., Skov, F., 2005. The relative roles of environment and history as controls of tree species composition and richness in Europe. J. Biogeogr. 32, 1019-1033
Trotsiuk, V., Babst, F., Grossiord, C., Gessler, A., Forrester, D.I., Buchmann, N., Schaub, M., Eugster, W., 2021. Tree growth in Switzerland is increasingly constrained by rising evaporative demand. J. Ecol. 109, 2981-2990
Venalainen, A., Korhonen, N., Hyvarinen, O., Koutsias, N., Xystrakis, F., Urbieta, I.R., Moreno, J.M., 2014. Temporal variations and change in forest fire danger in Europe for 1960-2012. Nat. Hazard Earth Sys. 14, 1477-1490
Vitali, A., Urbinati, C., Weisberg, P.J., Urza, A.K., Garbarino, M., 2018. Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy). J. Veg. Sci. 29, 189-199
Vitasse, Y., Ursenbacher, S., Klein, G., Bohnenstengel, T., Chittaro, Y., Delestrade, A., Monnerat, C., Rebetez, M., Rixen, C., Strebel, N., Schmidt, B.R., Wipf, S., Wohlgemuth, T., Yoccoz, N.G., Lenoir, J., 2021. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 96, 1816-1835
Vogiatzakis, I.N., Griffiths, G.H., Mannion, A.M., 2003. Environmental factors and vegetation composition, Lefka Ori massif, Crete, S. Aegean. Global Ecol. Biogeogr. 12, 131-146
Vogiatzakis, I.N., Mannion, A.M., Sarris, D., 2016. Mediterranean island biodiversity and climate change: the last 10,000 years and the future. Biodivers. Conserv. 25, 2597-2627
Zhu, K., Woodall, C.W., Clark, J.S., 2012. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042-1052
Zindros, A., Radoglou, K., Milios, E., Kitikidou, K., 2020. Tree line shift in the Olympus Mountain (Greece) and climate change. Forests 11, 985
We acknowledge support from the ECOPOTENTIAL project-EU Horizon 2020 research and innovation program, grant agreement no. 641762.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).