Journal Home > Volume 15 , Issue 1

Recent advances in our understanding of avian chemical communication have highlighted the importance of olfaction in many aspects of avian life. Prior studies investigating predator avoidance behaviors in response to predator odor cues have produced mixed results across species and contexts. Here we assess if a community of birds in eastern Pennsylvania displays avoidance behaviors towards predator odor cues in a natural foraging setting. We use clay caterpillars to measure foraging activity by birds in the presence of predator (bobcat) urine, non-predator (rabbit) urine, and water controls in two different environmental contexts (field vs. forest). Although we detected a weak trend for birds to forage less at predator urine-treated sites, we found no significant difference in avian foraging between the site types. We did find that foraging rates between environmental contexts changed significantly over the course of the experiment, with forest sites showing decreasing foraging rates and field sites showing increasing foraging rates. Our results reinforce the published literature that avoidance of predator odors by birds may not be ubiquitous across contexts and species.


menu
Abstract
Full text
Outline
About this article

No evidence of predator odor avoidance in a North American bird community

Show Author's information Austin DottaBatur YamanAlex Van Huynh( )
Department of Biology, DeSales University, 2755 Station Avenue, Center Valley, PA, USA

Abstract

Recent advances in our understanding of avian chemical communication have highlighted the importance of olfaction in many aspects of avian life. Prior studies investigating predator avoidance behaviors in response to predator odor cues have produced mixed results across species and contexts. Here we assess if a community of birds in eastern Pennsylvania displays avoidance behaviors towards predator odor cues in a natural foraging setting. We use clay caterpillars to measure foraging activity by birds in the presence of predator (bobcat) urine, non-predator (rabbit) urine, and water controls in two different environmental contexts (field vs. forest). Although we detected a weak trend for birds to forage less at predator urine-treated sites, we found no significant difference in avian foraging between the site types. We did find that foraging rates between environmental contexts changed significantly over the course of the experiment, with forest sites showing decreasing foraging rates and field sites showing increasing foraging rates. Our results reinforce the published literature that avoidance of predator odors by birds may not be ubiquitous across contexts and species.

Keywords: Foraging, Olfaction, Predation, Odor, Predator-avoidance

References(70)

Abolaffio, M., Reynolds, A.M., Cecere, J.G., Paiva, V.H., Focardi, S., 2018. Olfactory-cued navigation in shearwaters: linking movement patterns to mechanisms. Sci. Rep. 8, 11590 https://doi.org/10.1038/s41598-018-29919-0.

Allen, M.L., Wallace, C.F., Wilmers C.C., 2015. Patterns in bobcat (Lynx rufus) scent marking and communication behaviors. J. Ethol. 33, 9-14. https://doi.org/10.1007/s10164-014-0418-0.

Amo, L., Galván, I., Tomás, G., Sanz, J.J., 2008. Predator odour recognition and avoidance in a songbird. Funct. Ecol. 22, 289-293. https://doi.org/10.1111/j.1365-2435.2007.01361.x.

Amo, L., Visser, M.E., van Oers, K., 2011. Smelling out predators is innate in birds. Ardea 99, 177-184. https://doi.org/10.5253/078.099.0207.

Amo, L., Avilés, J.M., Parejo, D., Peña, A., Rodríguez, J., Tomás, G., 2012. Sex recognition by odour and variation in the uropygial gland secretion in starlings. J. Anim. Ecol. 81, 605-613. https://doi.org/10.1111/j.1365-2656.2011.01940.x.

Amo, L., López-Rull, I., Pagán, I., García, C.M., 2015. Evidence that the house finch (Carpodacus mexicanus) uses scent to avoid omnivore mammals. Rev. Chil. Hist. Nat. 88, 1-7. http://dx.doi.org/https://doi.org/10.1186/S40693-015-0036-4.

Amo, L., Tomás, G., López-García, A., 2017. Role of chemical and visual cues of mammalian predators in nest defense in birds. Behav. Ecol. Sociobiol. 71, 1-9. https://doi.org/10.1007/s00265-017-2281-9.

Balthazart, J., Taziaux, M., 2009. The underestimated role of olfaction in avian reproduction? Behav. Brain Res. 200, 248-259. https://doi.org/10.1016/j.bbr.2008.08.036.

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1-48. https://doi.org/10.18637/jss.v067.i01.

Blackwell, B.F., Seamans, T.W., Pfeiffer, M.B., Buckingham, B.N., 2018. European Starling (Sturnus vulgaris) reproduction undeterred by predator scent inside nest boxes. Can. J. Zool. 96, 980-986. https://doi.org/10.1139/cjz-2017-0299.

Bonadonna, F., Mardon, J., 2010. One house two families: petrel squatters get a sniff of low‐cost breeding opportunities. Ethology 116, 176-182. https://doi.org/10.1111/j.1439-0310.2009.01725.x.

Bonadonna, F., Sanz-Aguilar, A., 2012. Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509-513. https://doi.org/10.1016/j.anbehav.2012.06.014.

Bowen, W.D., Cowan, I.M., 1980. Scent marking in coyotes. Can. J. Zool. 58, 473-480.

Caro, S. P., Balthazart, J., Bonadonna, F., 2015. The perfume of reproduction in birds: chemosignaling in avian social life. Horm. Behav. 68, 25-42. https://doi.org/10.1016/j.yhbeh.2014.06.001.

Caro, S.P., Balthazart, J., 2010. Pheromones in birds: myth or reality? J. Comp. Physiol. A. 196, 751-766. https://doi.org/10.1007/s00359-010-0534-4.

Caspers, B.A., Hoffman, J.I., Kohlmeier, P., Krüger, O., Krause, E.T., 2013. Olfactory imprinting as a mechanism for nest odour recognition in zebra finches. Anim. Behav. 86, 85-90. https://doi.org/10.1016/j.anbehav.2013.04.015.

Caspers, B.A., Gagliardo, A., Krause, E.T., 2015. Impact of kin odour on reproduction in zebra finches. Behav. Ecol. Sociobiol. 69, 1827-1833. https://doi.org/10.1007/s00265-015-1995-9.

Caspers, B.A., Hagelin, J.C., Paul, M., Bock, S., Willeke, S., Krause, E.T., 2017. Zebra Finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Sci. Rep. 7, 1-8. https://doi.org/10.1038/s41598-017-13110-y.

Coffin, H.R., Watters, J.V., Mateo, J.M., 2011. Odor-based recognition of familiar and related conspecifics: a first test conducted on captive Humboldt penguins (Spheniscus humboldti). PLoS One. 6, e25002. https://doi.org/10.1371/journal.pone.0025002.

Driver, R.J., Balakrishnan, C.N., 2021. Highly contiguous genomes improve the understanding of avian olfactory receptor repertoires. Integr. Comp. Biol. 61, 1281-1290. https://doi.org/10.1093/icb/icab150.

Eichholz, M.W., Dassow, J.A., Stafford, J.D., Weatherhead, P.J., 2012. Experimental evidence that nesting ducks use mammalian urine to assess predator abundance. Auk 129, 638-644. https://doi.org/10.1525/auk.2012.12040.

Ekner, A., Tryjanowski, P., 2008. Do small hole nesting passerines detect cues left by a predator? A test on winter roosting sites. Acta Ornithol. (Wars.) 43, 107-111. https://doi.org/10.3161/000164508X345392.

Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression, third ed. SAGE, Thousand Oaks, California, USA.

Fracasso, G., Tuliozi, B., Hoi, H., Griggio, M., 2019. Can house sparrows recognize familiar or kin-related individuals by scent? Curr. Zool. 65, 53-59. https://doi.org/10.1093/cz/zoy018.

Gérard, A., Ganzhorn, J.U., Kull, C.A., Carrière, S.M., 2015. Possible roles of introduced plants for native vertebrate conservation: the case of Madagascar. Restor. Ecol. 23, 768-775. https://doi.org/10.1111/rec.12246.

Godard, R.D., Bowers, B.B., Morgan Wilson, C., 2007. Eastern bluebirds Sialia sialis do not avoid nest boxes with chemical cues from two common nest predators. J. Avian Biol. 38, 128-131. https://doi.org/10.1111/j.2007.0908-8857.03788.x.

Golüke, S., Dörrenberg, S., Krause, E.T., Caspers, B.A., 2016. Female zebra finches smell their eggs. PLoS One 11, e0155513. https://doi.org/10.1371/journal.pone.0155513.

Grieves, L.A., Gilles, M., Cuthill, I.C., Székely, T., MacDougall-Shackleton, E.A., Caspers, B.A., 2022. Olfactory camouflage and communication in birds. Biol. Rev. 97, 1193-1209. https://doi.org/10.1111/brv.12837.

Griggio, M., Fracasso, G., Mahr, K., Hoi, H., 2016. Olfactory assessment of competitors to the nest site: an experiment on a passerine species. PLoS One 11, e0167905. https://doi.org/10.1371/journal.pone.0167905.

Gwinner, H., Berger, S., 2008. Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim. Behav. 75, 971-976. https://doi.org/10.1016/j.anbehav.2007.08.008.

Henry, J.D., 1977. The use of urine marking in the scavenging behavior of the red fox (Vulpes vulpes). Behaviour 61, 82-105.

Hiltpold, I., Shriver, W.G., 2018. Birds bug on indirect plant defenses to locate insect prey. J. Chem. Ecol. 44, 576-579. https://doi.org/10.1007/s10886-018-0962-0.

Hutchinson, L.V., Wenze, B.M., 1980. Olfactory guidance in foraging by Procellariiforms. Condor 82, 314-319. https://doi.org/10.2307/1367400.

Johnson, L.S., Murphy, S.M., Parrish, G.W., 2011. Lack of predator‐odor detection and avoidance by a songbird, the House Wren. J. Field Ornithol. 82, 150-157. https://doi.org/10.1111/j.1557-9263.2011.00317.x.

Krause, E.T., Krüger, O., Kohlmeier, P., Caspers, B.A., 2012. Olfactory kin recognition in a songbird. Biol. Lett. 8, 327-329. https://doi.org/10.1098/rsbl.2011.1093.

Krause, E.T., Paul, M., Krüger, O., Caspers, B.A., 2023. Olfactory sex preferences in six Estrildid Finch species. Front. Ecol. Evol. 11, 1000531 https://doi.org/10.3389/fevo.2023.1000531.

MacDonald, D.W., 1980. Patterns of scent marking with urine and faeces amongst carnivore communities. Symp. Zool. Soc. Lond. 45, 107-139.

Mahr, K., Nowack, L., Knauer, F., Hoi, H., 2022. Songbirds use scent cues to relocate to feeding sites after displacement: an experiment in great tits (Parus major). Front. Ecol. Evol. 10, 858981 https://doi.org/10.3389/fevo.2022.858981.

Nguyen, M., McGrath, C., McNamara, C., Van Huynh, A., 2022. Tritrophic interactions with avian predators: the effect of host plant species and herbivore-induced plant volatiles on recruiting avian predators. J. Field Ornithol. https://doi.org/10.1146/annurev-ento-020117-043507.

Petit, C., Hossaert-McKey, M., Perret, P., Blondel, J., Lambrechts, M.M., 2002. Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecol. Lett. 5, 585-589. https://doi.org/10.1046/j.1461-0248.2002.00361.x.

Pollonara, E., Luschi, P., Guilford, T., Wikelski, M., Bonadonna, F., Gagliardo, A., 2015. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea. Sci. Rep. 5, 16486 https://doi.org/10.1038/srep16486.

Potier, S., Duriez, O., Célérier, A., Liegeois, J.L., Bonadonna, F., 2019. Sight or smell: which senses do scavenging raptors use to find food? Anim. Cognit. 22, 49-59. https://doi.org/10.1007/s10071-018-1220-0.

Potier, S., 2020. Olfaction in raptors. Zool. J. Linn. Soc. 189, 713-721. https://doi.org/10.1093/zoolinnean/zlz121.

Roth, T.C., Cox, J., Lima, S., 2008. Can foraging birds assess predation risk by scent? Anim. Behav. 76, 2021-2027. https://doi.org/10.1016/j.anbehav.2008.08.022.

Rothman, R.J., Mech, L.D., 1979. Scent-marking in lone wolves and newly formed pairs. Anim. Behav. 27, 750-760.

Rubene, D., Urhan, U., Ninkovic, V., Brodin, A., 2022. Great tits learn odors and colors equally well, and show no predisposition for herbivore-induced plant volatiles. Front. Ecol. Evol. 9, 800057 https://doi.org/10.3389/fevo.2021.800057.

Saavedra, I., Amo, L., 2018. Insectivorous birds eavesdrop on the pheromones of their prey. PLoS One. 13, e0190415. https://doi.org/10.1371/journal.pone.0190415.

Shutler, D., 2019. Some important overlooked aspects of odors in avian nesting ecology. J. Avian Biol. 50, e02003 https://doi.org/10.1111/jav.02003.

Soini, H.A., Schrock, S.E., Bruce, K.E., Wiesler, D., Ketterson, E. D., Novotny, M.V., 2007. Seasonal variation in volatile compound profiles of preen gland secretions of the dark-eyed junco (Junco hyemalis). J. Chem. Ecol. 33, 183-198. https://doi.org/10.1007/s10886-006-9210-0.

Sonnenberg, B.R., Branch, C.L., Pitera, A.M., Bridge, E., Pravosudov, V.V., 2019. Natural selection and spatial cognition in wild food-caching mountain chickadees. Curr. Biol. 29, 670-676. https://doi.org/10.1016/j.cub.2019.01.006.

Stanback, M.T., Dove, C.M., Fonda, C., Parkes, P., Ptaschinski, J., 2019. Eastern Bluebirds (Sialia sialis) do not avoid nest cavities containing predator odors. Wilson J. Ornithol. 131, 680-686. https://doi.org/10.1676/18-163.

Stanback, M.T., Rollfinke, M. F., 2023. Tree Swallows (Tachycineta bicolor) do not avoid nest cavities containing the odors of house mice (Mus musculus). Wilson J. Ornithol. 135, 79-85. https://doi.org/10.1676/22-00045.

Stanbury, M., Briskie, J., 2015. I smell a rat: can New Zealand birds recognize the odor of an invasive mammalian predator? Curr. Zool. 61, 34-41. https://doi.org/10.1093/czoolo/61.1.34.

Steiger, S.S., Fidler, A.E., Valcu, M., Kempenaers, B., 2008. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proc. R. Soc. B: Biol. Sci. 275, 2309-2317. https://doi.org/10.1098/rspb.2008.0607.

Steiger, S.S., Kuryshev, V.Y., Stensmyr, M.C., Kempenaers, B., Mueller, J.C., 2009a. A comparison of reptilian and avian olfactory receptor gene repertoires: species-specific expansion of group γ genes in birds. BMC Genom. 10, 1-10. https://doi.org/10.1186/1471-2164-10-446.

Steiger, S.S., Fidler, A.E., Kempenaers, B., 2009b. Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability. BMC Evol. Biol. 9, 1-11. https://doi.org/10.1186/1471-2148-9-117.

Steiger, S.S., Fidler, A.E., Mueller, J.C., Kempenaers, B., 2010. Evidence for adaptive evolution of olfactory receptor genes in 9 bird species. J. Hered. 101, 325-333. https://doi.org/10.1093/jhered/esp105.

Van Huynh, A., Rice, A.M., 2019. Conspecific olfactory preferences and interspecific divergence in odor cues in a chickadee hybrid zone. Ecol. Evol. 9, 9671-9683. https://doi.org/10.1002/ece3.5497.

Van Huynh, A., Rice, A.M., 2021. Odor preferences in hybrid chickadees: implications for reproductive isolation and asymmetric introgression. Behav. Ecol. Sociobiol. 75, 1-11. https://doi.org/10.1007/s00265-021-03069-2.

Van Huynh, A., 2023. No Evidence of Predator Odor Avoidance in a North American Bird Community, Mendeley Data, V1. https://doi.org/10.17632/sfs64vfstp.1.

Whittaker, D.J., Soini, H.A., Atwell, J.W., Hollars, C., Novotny, M.V., Ketterson, E.D., 2010. Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behav. Ecol. 21, 608-614. https://doi.org/10.1093/beheco/arq033.

Whittaker, D.J., Richmond, K.M., Miller, A.K., Kiley, R., Bergeon Burns, C., Atwell, J.W., et al., 2011a. Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. 22, 1256-1263. https://doi.org/10.1093/beheco/arr122.

Whittaker, D.J., Soini, H.A., Gerlach, N.M., Posto, A.L., Novotny, M.V., Ketterson, E.D., 2011b. Role of testosterone in stimulating seasonal changes in a potential avian chemosignal. J. Chem. Ecol. 37, 1349-1357. https://doi.org/10.1007/s10886-011-0050-1.

Whittaker, D.J., Gerlach, N.M., Soini, H.A., Novotny, M.V., Ketterson, E.D., 2013. Bird odour predicts reproductive success. Anim. Behav. 86, 697-703. https://doi.org/10.1016/j.anbehav.2013.07.025.

Yang, S.Y., Walther, B.A., Weng, G.J., 2015. Stop and smell the pollen: the role of olfaction and vision of the oriental honey buzzard in identifying food. PLoS One. 10, e0130191. https://doi.org/10.1371/journal.pone.0130191.

Zannoni, N., Wikelski, M., Gagliardo, A., Raza, A., Kramer, S., Seghetti, C., et al., 2020. Identifying volatile organic compounds used for olfactory navigation by homing pigeons. Sci. Rep. 10, 15879. https://doi.org/10.1038/s41598-020-72525-2.

Zhang, J.X., Sun, L., Zuo, M.X., 2009. Uropygial gland volatiles may code for olfactory information about sex, individual, and species in Bengalese finches Lonchura striata. Curr. Zool. 55, 357-365. https://doi.org/10.1093/czoolo/55.5.357.

Zhang, J.X., Wei, W., Zhang, J.H., Yang, W.H., 2010. Uropygial gland-secreted alkanols contribute to olfactory sex signals in budgerigars. Chem. Senses 35, 375-382. https://doi.org/10.1093/chemse/bjq025.

Zhang, Y.H., Du, Y.F., Zhang, J.X., 2013. Uropygial gland volatiles facilitate species recognition between two sympatric sibling bird species. Behav. Ecol. 24, 1271-1278. https://doi.org/10.1093/beheco/art068.

Zidar, J., Løvlie, H., 2012. Scent of the enemy: behavioural responses to predator faecal odour in the fowl. Anim. Behav. 84, 547-554. https://doi.org/10.1016/j.anbehav.2012.06.006.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 July 2023
Revised: 19 December 2023
Accepted: 20 December 2023
Published: 28 December 2023
Issue date: March 2024

Copyright

© 2023 The Authors.

Acknowledgements

We thank the DeSales University Biology Department and Women for DeSales for supporting this work. We also thank Wendy Maybruck for her logistical support.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return