Journal Home > Volume 14 , Issue 4

The loss of bird species diversity is a crucial problem in the European agricultural landscape. Change in the area coverage of major land cover types has been mentioned as one of the main factors responsible for bird biodiversity impoverishment. In this study, we focused on the impact of landscape matrix characteristics on bird species richness and on Faith's phylogenetic diversity index on a spatial scale of 1000-m radius around the measured occurrence points. We investigated how land cover composition affects bird diversity on the landscape scale using nationwide citizen science data. In total, 168,739 records of bird occurrence in the South Moravian Region of the Czech Republic during growing season from 2009 to 2019 were evaluated. We found that the presence of water bodies and wetlands significantly corresponded to the areas of highest bird species richness. We also revealed that the presence of forests (~60% of the forest in the Czech Republic is occupied by commercial forests), urban areas and arable land were negatively associated with bird species richness and phylogenetic diversity. Forests (both coniferous and deciduous) and urban habitats were found to have a tendency to host a clustered phylogenetic community structure in comparison with wetland and arable land. A strong negative association between forest proportion and bird diversity led us to conclude that the expansion of the forest (with simple species composition, horizontal and vertical structure) could be one of the critical drivers of the decline of bird species diversity in the European agricultural landscape. On the other hand, our results also pointed out that small woody features (i.e., woodlots) and scattered woodland shrub vegetation were one of the main landscape characteristics supporting a bird diversity in rural landscape. This is in concordance with other studies which mention these landscape structures as important elements for nesting and foraging of farmland birds. We thus recommend to maintain and restore scattered trees or woodlots with complex structure in agricultural landscape.


menu
Abstract
Full text
Outline
About this article

Impact of agricultural landscape structure on the patterns of bird species diversity at a regional scale

Show Author's information Denisa Dvořáková( )Jan ŠipošJosef Suchomel
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic

Abstract

The loss of bird species diversity is a crucial problem in the European agricultural landscape. Change in the area coverage of major land cover types has been mentioned as one of the main factors responsible for bird biodiversity impoverishment. In this study, we focused on the impact of landscape matrix characteristics on bird species richness and on Faith's phylogenetic diversity index on a spatial scale of 1000-m radius around the measured occurrence points. We investigated how land cover composition affects bird diversity on the landscape scale using nationwide citizen science data. In total, 168,739 records of bird occurrence in the South Moravian Region of the Czech Republic during growing season from 2009 to 2019 were evaluated. We found that the presence of water bodies and wetlands significantly corresponded to the areas of highest bird species richness. We also revealed that the presence of forests (~60% of the forest in the Czech Republic is occupied by commercial forests), urban areas and arable land were negatively associated with bird species richness and phylogenetic diversity. Forests (both coniferous and deciduous) and urban habitats were found to have a tendency to host a clustered phylogenetic community structure in comparison with wetland and arable land. A strong negative association between forest proportion and bird diversity led us to conclude that the expansion of the forest (with simple species composition, horizontal and vertical structure) could be one of the critical drivers of the decline of bird species diversity in the European agricultural landscape. On the other hand, our results also pointed out that small woody features (i.e., woodlots) and scattered woodland shrub vegetation were one of the main landscape characteristics supporting a bird diversity in rural landscape. This is in concordance with other studies which mention these landscape structures as important elements for nesting and foraging of farmland birds. We thus recommend to maintain and restore scattered trees or woodlots with complex structure in agricultural landscape.

Keywords: Spatial heterogeneity, Citizen science, Conservation, Bird occurrence, Landscape influence, Phylogenetic diversity

References(124)

Anderson, C., Travis, J.M.J., Palmer, S.C.F., Crick, H.Q.P., Lancaster, L.T., 2022. Getting lost in the matrix? On how the characteristics and arrangement of linear landscape elements influence ecological connectivity. Landsc. Ecol. 37, 2503–2517. https://doi.org/10.1007/s10980-022-01501-0.

Andrén, H., 1996. Population responses to habitat fragmentation: statistical power and the random sample hypothesis. Oikos 76, 235. https://doi.org/10.2307/3546195.

Arcdata Praha, 2016. ArcČR® 500: Digital Vector Geographic Database of the Czech Republic. ArcČR® 500 version 3.3. https://www.arcdata.cz/cs-cz/produkty/data/arccr.
Bartoń, K., 2022. MuMIn: Multi-Model Inference. Version 1.46.0. https://CRAN.R-project.org/package=MuMIn.

Bennett, A.F., Holland, G.J., Haslem, A., Stewart, A., Radford, J.Q., Clarke, R.H., 2022. Restoration promotes recovery of woodland birds in agricultural environments: a comparison of 'revegetation' and 'remnant' landscapes. J. Appl. Ecol. 59, 1334–1346. https://doi.org/10.1111/1365-2664.14148.

Berg, Å., 2002. Composition and diversity of bird communities in Swedish farmland–forest mosaic landscapes. Bird Study 49, 153–165. https://doi.org/10.1080/00063650209461260.

Betts, M.G., Fahrig, L., Hadley, A.S., Halstead, K.E., Bowman, J., Robinson, W.D., et al., 2014. A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37, 517–527. https://doi.org/10.1111/ecog.00740.

Betts, M.G., Yang, Z., Hadley, A.S., Smith, A.C., Rousseau, J.S., Northrup, J.M., et al., 2022. Forest degradation drives widespread avian habitat and population declines. Nat. Ecol. Evol. 6, 709–719. https://doi.org/10.1038/s41559-022-01737-8.

Bowler, D.E., Bhandari, N., Repke, L., Beuthner, C., Callaghan, C.T., Eichenberg, D., et al., 2022. Decision-making of citizen scientists when recording species observations. Sci. Rep. 12, 11069 https://doi.org/10.1038/s41598-022-15218-2.

Brambilla, M., Casale, F., Bergero, V., Bogliani, G., Crovetto, G.M., Falco, R., et al., 2010. Glorious past, uncertain present, bad future? Assessing effects of land-use changes on habitat suitability for a threatened farmland bird species. Biol. Conserv. 143, 2770–2778. https://doi.org/10.1016/j.biocon.2010.07.025.

Brown, J.A., Lockwood, J.L., Avery, J.D., Curtis Burkhalter, J., Aagaard, K., Fenn, K.H., 2019. Evaluating the long-term effectiveness of terrestrial protected areas: a 40-year look at forest bird diversity. Biodivers. Conserv. 28, 811–826. https://doi.org/10.1007/s10531-018-01693-5.

Bucher, R., Andres, C., Wedel, M.F., Entling, M.H., Nickel, H., 2016. Biodiversity in lowintensity pastures, straw meadows, and fallows of a fen area – A multitrophic comparison. Agric. Ecosyst. Environ. 219, 190–196. https://doi.org/10.1016/j.agee.2015.12.019.

Burns, F., Eaton, M.A., Burfield, I.J., Klvaňová, A., Šilarová, E., Staneva, A., et al., 2021. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 11, 16647–16660. https://doi.org/10.1002/ece3.8282.

Cade, B.S., 2015. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382. https://doi.org/10.1890/14-1639.1.

Callaghan, C.T., Major, R.E., Lyons, M.B., Martin, J.M., Kingsford, R.T., 2018. The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere 9, e02347. https://doi.org/10.1002/ecs2.2347.

Callaghan, C.T., Poore, A.G.B., Hofmann, M., Roberts, C.J., Pereira, H.M., 2021. Largebodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 https://doi.org/10.1038/s41598-021-98584-7.

Carbó-Ramírez, P., Zuria, I., 2011. The value of small urban greenspaces for birds in a Mexican city. Landsc. Urban Plann. 100, 213–222. https://doi.org/10.1016/j.landurbplan.2010.12.008.

Černá, M., Fišer, B., Potočiarová, E., Vejvodová, A., 2007. Agri-Environmental Schemes in the Czech Republic 2007–2013. Ministry of Agriculture of the Czech Republic and Ministry of the Environment of the Czech Republic and The Nature Conservation Agency of the Czech Republic, Praha.

Chamberlain, D., Kibuule, M., Skeen, R.Q., Pomeroy, D., 2018. Urban bird trends in a rapidly growing tropical city. Ostrich 89, 275–280. https://doi.org/10.2989/00306525.2018.1489908.

Chao, A., 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783. https://doi.org/10.2307/2531532.

Cherkaoui, I., Hanane, S., 2011. Status and breeding biology of Northern Lapwings Vanellus vanellus in the Gharb coastal wetlands of northern Morocco. Wader Study Group Bull. 118, 49–54.

Clergeau, P., Croci, S., Jokimäki, J., Kaisanlahti-Jokimäki, M-L., Dinetti, M., 2006. Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol. Conserv. 127, 336–344. https://doi.org/10.1016/j.biocon.2005.06.035.

CSO, 2009. Faunistická Databáze. Pozorování. –2019. https://www.birds.cz/avif/obs_new.php (Accessed 5 June 2020).
CZSO, 2009. Územně Analytické Podklady. Datové Vrstvy Pro GIS. –2019. https://www.czso.cz/csu/czso/csu_a_uzemne_analyticke_podklady (Accessed 26 Mya 2020).
CZSO, 2021. Statistical Yearbook of the Jihomoravský Region. https://www.czso.cz/documents/11280/17987574/rocenka_char.pdf/f5fcf39d-1890-4a6c-8612-585908658fe6?version=1.18 (Accessed 26 May 2020).
CZSO, 2022. Lesnictví V Jihomoravském Kraji V Roce 2021. https://www.czso.cz/documents/11280/17878262/Lesnictvi_2021.pdf/f80ce372-bd74-4542-a76d-30ecdc9e5ad9?version=1.1 (Accessed 25 August 2023).

Dertien, J.S., Self, S., Ross, B.E., Barrett, K., Baldwin, R.F., 2020. The relationship between biodiversity and wetland cover varies across regions of the conterminous United States. PLoS One 15, e0232052. https://doi.org/10.1371/journal.pone.0232052.

Dolédec, S., Chessel, D., ter Braak, C.J.F., Champely, S., 1996. Matching species traits to environmental variables: a new three-table ordination method. Environ. Ecol. Stat. 3, 143–166. https://doi.org/10.1007/BF02427859.

Donald, P.F., Green, R.E., Heath, M.F., 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proc. Roy. Soc. Lond. B 268, 25–29. https://doi.org/10.1098/rspb.2000.1325.

Dungel, J., Hudec, K., Šťastný, K., 2021. Atlas Ptáků České a Slovenské Republiky, Vydání 3. In: Přepracované a Rozšířené (Ed.), Atlas. Academia, Praha.

Dvořaková, L., Kuczyński, L., Rivas-Salvador, J., Reif, J., 2022. Habitat characteristics supporting bird species richness in mid-field woodlots. Front. Environ. Sci. 10, 816255 https://doi.org/10.3389/fenvs.2022.816255.

ESRI, 2021. ArcGIS Pro. Environmental Systems Research Institute, Redlands: CA, Version 2.9.2. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview.
European Environment Agency, 2018a. High Resolution Layer: Forest Type (FTY) 2012. https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012. (Accessed 11 August 2020).
European Environment Agency, 2018b. High Resolution Layer: Forest Type (FTY) 2015. https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2015. (Accessed 11 August 2020).
European Environment Agency, 2018c. High Resolution Layer: Grassland (GRA) 2015. https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps/2015?tab=mapview. (Accessed 11 August 2020).
European Environment Agency, 2019a. Corine Land Cover. CLC 2012. https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012. (Accessed 11 August 2020).
European Environment Agency, 2019b. Corine Land Cover. CLC 2018. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018. (Accessed 11 August 2020).
European Environment Agency, 2019c. High Resolution Layer: Small Woody Features (SWF) 2015. https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015?tab=mapview. (Accessed 12 August 2020).
European Environment Agency, 2020a. High Resolution Layer: Forest Type (FTY) 2018. https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/forest-type-2018. (Accessed 11 August 2021).
European Environment Agency, 2020b. High Resolution Layer: Grassland (GRA) 2018. https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/statusmaps/grassland-2018. (Accessed 11 August 2021).
European Environment Agency, 2020c. High Resolution Layer: Water & Wetness (WAW) 2015. https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness/status-maps/2015. (Accessed 12 August 2021).
European Environment Agency, 2020d. High Resolution Layer: Water & Wetness (WAW) 2018. https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness/status-maps/water-wetness-2018?tab=mapview. (Accessed 12 August 2021).

Fahrig, L., Baundry, J., Brotons, L., Burel, F.G., Crist, T.O., Fuller, R.J., et al., 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x.

Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10. https://doi.org/10.1016/0006-3207(92)91201-3.

Fischer, J., Stott, J., Law, B.S., 2010. The disproportionate value of scattered trees. Biol. Conserv. 143, 1564–1567. https://doi.org/10.1016/j.biocon.2010.03.030.

Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression, third ed. SAGE, Los Angeles.

Fraixedas, S., Lindén, A., Piha, M., Cabeza, M., Gregory, R., Lehikoinen, A., 2020. A stateof-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol. Indicat. 118, 106728 https://doi.org/10.1016/j.ecolind.2020.106728.

Galitsky, C., Lawler, J.J., 2015. Relative influence of local and landscape factors on bird communities vary by species and functional group. Landsc. Ecol. 30, 287–299. https://doi.org/10.1007/s10980-014-0138-4.

Ganzevoort, W., van den Born, R.J.G., Halffman, W., Turnhout, S., 2017. Sharing biodiversity data: citizen scientists' concerns and motivations. Biodivers. Conserv. 26, 2821–2837. https://doi.org/10.1007/s10531-017-1391-z.

Gellrich, M., Baur, P., Koch, B., Zimmermann, N.E., 2007. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: a spatially explicit economic analysis. Agric. Ecosyst. Environ. 118, 93–108. https://doi.org/10.1016/j.agee.2006.05.001.

Gotelli, N.J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621. https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2.

Grafen, A., 1989. The phylogenetic regression. Phil. Trans. Roy. Soc. Lond. B 326, 119–157. https://doi.org/10.1098/rstb.1989.0106.

Gregory, R., Noble, D., Field, R., Marchant, J., Raven, M.J., Gibbons, D., 2003. Using birds as indicators of biodiversity. Ornis Hung. 12, 11–24.

Guilherme, J.L., Miguel Pereira, H., 2013. Adaptation of bird communities to farmland abandonment in a mountain landscape. PLoS One 8, e73619. https://doi.org/10.1371/journal.pone.0073619.

Hanioka, M., Yamaura, Y., Senzaki, M., Yamanaka, S., Kawamura, K., Nakamura, F., 2018. Assessing the landscape-dependent restoration potential of abandoned farmland using a hierarchical model of bird communities. Agric. Ecosyst. Environ. 265, 217–225. https://doi.org/10.1016/j.agee.2018.06.014.

Hendrickx, F., Maelfait, J-P., Van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., et al., 2007. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes: agricultural factors and arthropod biodiversity. J. Appl. Ecol. 44, 340–351. https://doi.org/10.1111/j.1365-2664.2006.01270.x.

Hill, J.M., Egan, J.F., Stauffer, G.E., Diefenbach, D.R., 2014. Habitat availability is a more plausible explanation than insecticide acute toxicity for U.S. grassland bird species declines. PLoS One 9, e98064. https://doi.org/10.1371/journal.pone.0098064.

Horak, J., Peltanova, A., Podavkova, A., Safarova, L., Bogusch, P., Romportl, D., et al., 2013. Biodiversity responses to land use in traditional fruit orchards of a rural agricultural landscape. Agric. Ecosyst. Environ. 178, 71–77. https://doi.org/10.1016/j.agee.2013.06.020.

Humphrey, J.E., Haslem, A., Bennett, A.F., 2023. Housing or habitat: what drives patterns of avian species richness in urbanized landscapes? Landsc. Ecol. 38, 1919–1937.

Isaksson, C., 2018. Impact of urbanization on birds. In: Tietze, D.T. (Ed.), Bird Species, Fascinating Life Sciences. Springer International Publishing, Cham, pp. 235–257. https://doi.org/10.1007/978-3-319-91689-7_13.
DOI

Jakobsson, S., Lindborg, R., 2017. The importance of trees for woody pasture bird diversity and effects of the European Union's tree density policy. J. Appl. Ecol. 54, 1638–1647. https://doi.org/10.1111/1365-2664.12871.

Johnston, A., Moran, N., Musgrove, A., Fink, D., Baillie, S.R., 2020. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 https://doi.org/10.1016/j.ecolmodel.2019.108927.

Jonsen, I.D., Fahrig, L., 1997. Response of generalist and specialist insect herbivores to landscape spatial structure. Landsc. Ecol. 12, 185–197. https://doi.org/10.1023/A:1007961006232.

Jungandreas, A., Roilo, S., Strauch, M., Václavík, T., Volk, M., Cord, A.F., 2022. Response of endangered bird species to land-use changes in an agricultural landscape in Germany. Reg. Environ. Change 22, 19. https://doi.org/10.1007/s10113-022-01878-3.

Kamp, J., Reinhard, A., Frenzel, M., Kämpfer, S., Trappe, J., Hölzel, N., 2018. Farmland bird responses to land abandonment in Western Siberia. Agric. Ecosyst. Environ. 268, 61–69. https://doi.org/10.1016/j.agee.2018.09.009.

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., et al., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166.

Klingbeil, B.T., Willig, M.R., 2016. Matrix composition and landscape heterogeneity structure multiple dimensions of biodiversity in temperate forest birds. Biodivers. Conserv. 25, 2687–2708. https://doi.org/10.1007/s10531-016-1195-6.

Laurance, W.F., Nascimento, H.E.M., Laurance, S.G., Andrade, A., Ewers, R.M., Harms, K. E., et al., 2007. Habitat fragmentation, variable edge effects, and the landscapedivergence hypothesis. PLoS One 2, e1017. https://doi.org/10.1371/journal.pone.0001017.

Le Roux, D.S., Ikin, K., Lindenmayer, D.B., Manning, A.D., Gibbons, P., 2018. The value of scattered trees for wildlife: contrasting effects of landscape context and tree size. Divers. Distrib. 24, 69–81. https://doi.org/10.1111/ddi.12658.

Leveau, L.M., Ruggiero, A., Matthews, T.J., Isabel Bellocq, M., 2019. A global consistent positive effect of urban green area size on bird richness. Avian Res. 10, 30. https://doi.org/10.1186/s40657-019-0168-3.

Litteral, J., Shochat, E., 2017. The role of landscape-scale factors in shaping urban bird communities. In: Murgui, E., Hedblom, M. (Eds.), Ecology and Conservation of Birds in Urban Environments. Springer International Publishing, Cham, pp. 135–159.
DOI

Lojka, B., Teutscherová, N., Chládová, A., Kala, L., Szabó, P., Martiník, A., et al., 2021. Agroforestry in the Czech Republic: what hampers the comeback of a once traditional land use system? Agronomy 12, 69. https://doi.org/10.3390/agronomy12010069.

Manning, A.D., Fischer, J., Lindenmayer, D.B., 2006. Scattered trees are keystone structures–Implications for conservation. Biol. Conserv. 132, 311–321. https://doi.org/10.1016/j.biocon.2006.04.023.

McKinney, M.L., 2002. Urbanization, biodiversity, and conservation. Bioscience 52, 883. https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2.

Microsoft Corporation, 2022. Microsoft® Excel®. Version 2210. Redmod: WA. https://office.microsoft.com/excel.

Morelli, F., 2013. Relative importance of marginal vegetation (shrubs, hedgerows, isolated trees) surrogate of HNV farmland for bird species distribution in Central Italy. Ecol. Eng. 57, 261–266. https://doi.org/10.1016/j.ecoleng.2013.04.043.

Morelli, F., Pruscini, F., Santolini, R., Perna, P., Benedetti, Y., Sisti, D., 2013. Landscape heterogeneity metrics as indicators of bird diversity: determining the optimal spatial scales in different landscapes. Ecol. Indicat. 34, 372–379. https://doi.org/10.1016/j.ecolind.2013.05.021.

Morelli, F., Beim, M., Jerzak, L., Jones, D., Tryjanowski, P., 2014. Can roads, railways and related structures have positive effects on birds? – a review. Transport. Res. DTransport Environ. 30, 21–31. https://doi.org/10.1016/j.trd.2014.05.006.

Morelli, F., Benedetti, Y., Ibáñez-Álamo, J.D., Tryjanowski, P., Jokimäki, J., Kaisanlahti-Jokimäki, M-L., et al., 2021. Effects of urbanization on taxonomic, functional and phylogenetic avian diversity in Europe. Sci. Total Environ. 795, 148874 https://doi.org/10.1016/j.scitotenv.2021.148874.

Müllerová, J., Szabó, P., Hédl, R., 2014. The rise and fall of traditional forest management in southern Moravia: a history of the past 700 years. For. Ecol. Manag. 331, 104–115. https://doi.org/10.1016/j.foreco.2014.07.032.

Mulwa, R.K., Böhning-Gaese, K., Schleuning, M., 2012. High bird species diversity in structurally heterogeneous farmland in Western Kenya. Biotropica 44, 801–809. https://doi.org/10.1111/j.1744-7429.2012.00877.x.

Mze, 2022. Zpráva O Stavu Lesa a Lesního Hospodářství 2021. Ministerstvo zemědělství, Praha.

Norton, L., Johnson, P., Joys, A., Stuart, R., Chamberlain, D., Feber, R., et al., 2009. Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agric. Ecosyst. Environ. 129, 221–227. https://doi.org/10.1016/j.agee.2008.09.002.

O'Hara, K.L., 2016. What is close-to-nature silviculture in a changing world? Forestry 89, 1–6. https://doi.org/10.1093/forestry/cpv043.

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30, 683–691. https://doi.org/10.1016/j.cageo.2004.03.012.

Pellissier, V., Cohen, M., Boulay, A., Clergeau, P., 2012. Birds are also sensitive to landscape composition and configuration within the city centre. Landsc. Urban Plann. 104, 181–188. https://doi.org/10.1016/j.landurbplan.2011.10.011.

Pocewicz, A., Estes-Zumpf, W.A., Andersen, M.D., Copeland, H.E., Keinath, D.A., Griscom, H.R., 2013. Modeling the distribution of migratory bird stopovers to inform landscape-scale siting of wind development. PLoS One 8, e75363. https://doi.org/10.1371/journal.pone.0075363.

Pykal, J., Mikuláš, I., Vlček, J., Volf, O., 2021. Rozšíření a odhad početnosti chřástala polního (Crex crex) v České republice v roce 2020 a dlouhodobé trendy početnosti ve vybraných oblastech. Sylvia 57, 3–19.

R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.

Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T.J., et al., 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480.

Reider, I.J., Donnelly, M.A., Watling, J.I., 2018. The influence of matrix quality on species richness in remnant forest. Landsc. Ecol. 33, 1147–1157. https://doi.org/10.1007/s10980-018-0664-6.

Reif, J., 2013. Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol. 48, 1–16. https://doi.org/10.3161/000164513X669955.

Reif, J., Hanzelka, J., 2016. Grassland winners and arable land losers: the effects of posttotalitarian land use changes on long-term population trends of farmland birds. Agric. Ecosyst. Environ. 232, 208–217. https://doi.org/10.1016/j.agee.2016.08.007.

Reif, J., Vermouzek, Z., 2019. Collapse of farmland bird populations in an Eastern European country following its EU accession. Conserv. Lett. 12, e12585 https://doi.org/10.1111/conl.12585.

Reif, J., Skálová, A.J., Vermouzek, Z., Voříšek, P., 2022. Long-term trends in forest bird populations reflect management changes in Central European forests. Ecol. Indicat. 141, 109137 https://doi.org/10.1016/j.ecolind.2022.109137.

Rime, Y., Luisier, C., Arlettaz, R., Jacot, A., 2020. Landscape heterogeneity and management practices drive habitat preferences of wintering and breeding birds in intensively-managed fruit-tree plantations. Agric. Ecosyst. Environ. 295, 106890 https://doi.org/10.1016/j.agee.2020.106890.

Romero-Calcerrada, R., Perry, G.L.W., 2004. The role of land abandonment in landscape dynamics in the SPA 'Encinares del río Alberche y Cofio, Central Spain, 1984–1999. Landsc. Urban Plann. 66, 217–232. https://doi.org/10.1016/S0169-2046(03)00112-9.

Šálek, M., Hula, V., Kipson, M., Daňková, R., Niedobová, J., Gamero, A., 2018. Bringing diversity back to agriculture: smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecol. Indicat. 90, 65–73. https://doi.org/10.1016/j.ecolind.2018.03.001.

Šálek, M., Kalinová, K., Daňková, R., Grill, S., Żmihorski, M., 2021. Reduced diversity of farmland birds in homogenized agricultural landscape: a cross-border comparison over the former Iron Curtain. Agric. Ecosyst. Environ. 321, 107628 https://doi.org/10.1016/j.agee.2021.107628.

Šálek, M., Bažant, M., Żmihorski, M., Gamero, A., 2022. Evaluating conservation tools in intensively-used farmland: higher bird and mammal diversity in seed-rich strips during winter. Agric. Ecosyst. Environ. 327, 107844 https://doi.org/10.1016/j.agee.2021.107844.

Salgueiro, P.A., Silva, C., Silva, A., Sá, C., Mira, A., 2020. Can quarries provide novel conditions for a bird of rocky habitats? Restor. Ecol. 28, 988–994. https://doi.org/10.1111/rec.13080.

Sasaki, K., Hotes, S., Kadoya, T., Yoshioka, A., Wolters, V., 2020. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 21, e00891 https://doi.org/10.1016/j.gecco.2019.e00891.

Schmidt, M.H., Tscharntke, T., 2005. The role of perennial habitats for Central European farmland spiders. Agric. Ecosyst. Environ. 105, 235–242. https://doi.org/10.1016/j.agee.2004.03.009.

Shen, F-Y., Ding, T-S., Tsai, J-S., 2023. Comparing avian species richness estimates from structured and semi-structured citizen science data. Sci. Rep. 13, 1214. https://doi.org/10.1038/s41598-023-28064-7.

Sirami, C., Brotons, L., Martin, J-L., 2007. Vegetation and songbird response to land abandonment: from landscape to census plot. Divers. Distrib. 13, 42–52. https://doi.org/10.1111/j.1472-4642.2006.00297.x.

Šťastný, K., Bejček, V., Mikuláš, I., Telecký, T., 2021. Atlas Hnízdního Rozšíření Ptáků V České Republice 2014–2017.

ter Braak, C.J.F., 2017. Fourth-corner correlation is a score test statistic in a log-linear trait–environment model that is useful in permutation testing. Environ. Ecol. Stat. 24, 219–242. https://doi.org/10.1007/s10651-017-0368-0.

ter Braak, C., Šmilauer, P., 2012. Canoco Reference Manual and User's Guide: Software of Ordination (Version 5.0). Microcomputer Power, Ithaca, NY.

ter Braak, C.J.F., Cormont, A., Dray, S., 2012. Improved testing of species traits–environment relationships in the fourth-corner problem. Ecology 93, 1525–1526. https://doi.org/10.1890/12-0126.1.

Thioulouse, J., Stéphane, D., Dufour, A-B., Siberchicot, A., Jombart, T., Pavoine, P., 2018. Multivariate Analysis of Ecological Data with Ade4. Springer Science+ Business Media, LLC, New York.
DOI

Threlfall, C.G., Mata, L., Mackie, J.A., Hahs, A.K., Stork, N.E., Williams, N.S.G., et al., 2017. Increasing biodiversity in urban green spaces through simple vegetation interventions. J. Appl. Ecol. 54, 1874–1883. https://doi.org/10.1111/1365-2664.12876.

Tiang, D.C.F., Morris, A., Bell, M., Gibbins, C.N., Azhar, B., Lechner, A.M., 2021. Ecological connectivity in fragmented agricultural landscapes and the importance of scattered trees and small patches. Ecol. Process. 10, 20. https://doi.org/10.1186/s13717-021-00284-7.

Tscharntke, T., Steffan-Dewenter, I., Kruess, A., Thies, C., 2002. Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol. Appl. 12, 354–363. https://doi.org/10.1890/1051-0761(2002)012[0354:COSHFT]2.0.CO;2.

Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I., Thies, C., 2005. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x.

Tscharntke, T., Sekercioglu, C.H., Dietsch, T.V., Sodhi, N.S., Hoehn, P., Tylianakis, J.M., 2008. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89, 944–951. https://doi.org/10.1890/07-0455.1.

Tscharntke, T., Tylianakis, J.M., Rand, T.A., Didham, R.K., Fahrig, L., Batáry, P., et al., 2012. Landscape moderation of biodiversity patterns and processes–eight hypotheses. Biol. Rev. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x.

Tu, H-M., Fan, M-W., Ko, J.C-J., 2020. Different habitat types affect bird richness and evenness. Sci. Rep. 10, 1221. https://doi.org/10.1038/s41598-020-58202-4.

Tuanmu, M-N., Jetz, W., 2015. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling: global habitat heterogeneity. Global Ecol. Biogeogr. 24, 1329–1339. https://doi.org/10.1111/geb.12365.

Wilson, S., Mitchell, G.W., Pasher, J., McGovern, M., Hudson, M-A.R., Fahrig, L., 2017. Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes. Ecol. Indicat. 83, 218–226. https://doi.org/10.1016/j.ecolind.2017.07.059.

Xu, W., Fu, W., Dong, J., Yu, J., Huang, P., Zheng, D., et al., 2022. Bird communities vary under different urbanization types—a case study in mountain parks of Fuzhou, China. Diversity 14, 555. https://doi.org/10.3390/d14070555.

Yang, X., Cui, H., Chen, C., 2022. Bird flight resistance analysis and planning strategies in urban regeneration areas: a case study of a certain area in Shenzhen, China. Sustainability 14, 12123. https://doi.org/10.3390/su141912123.

Zámečník, V., 2013. Metodická Příručka Pro Praktickou Ochranu Ptáků V Zemědělské Krajině: Metodika AOPK ČR. Agentura ochrany přírody a krajiny ČR, Praha.

Zamora-Marín, J.M., Zamora-López, A., Sánchez-Fernández, D., Calvo, J.F., OlivaPaterna, F.J., 2022. Traditional small waterbodies as key landscape elements for farmland bird conservation in Mediterranean semiarid agroecosystems. Glob. Ecol. Conserv. 37, e02183 https://doi.org/10.1016/j.gecco.2022.e02183.

Zurita, G.A., Pe'er, G., Bellocq, M.I., 2017. Bird responses to forest loss are influence by habitat specialization. Divers. Distrib. 23, 650–655. https://doi.org/10.1111/ddi.12559.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 April 2023
Revised: 29 September 2023
Accepted: 09 October 2023
Published: 10 November 2023
Issue date: December 2023

Copyright

© 2023 The Authors.

Acknowledgements

Acknowledgements

We would like to thank the Czech Society for Ornithology for operating the ornithological database and all the volunteers who contributed data to the public database, without whom the study could not have been performed. We would also like to thank Kontrolujeme s.r.o. for the professional language editing.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return