[6]
Iwahori, Y., Hagi, H., Usami, H., Woodham, R., Wang, A., Bhuyan, M., et al. (2017). Automatic polyp detection from endoscope image using likelihood map based on edge information. In Proceedings of the International Conference on Pattern Recognition Applications and Methods (pp. 402–409). Setúbal: SciTePress.
[8]
Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S. K., & Cui, S. (2021). Shallow attention network for polyp segmentation. In M. de Bruijne, P. C. Cattin, S. Cotin, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 699–708). Cham: Springer.
[9]
Zhao, X., Zhang, L., & Lu, H. (2021). Automatic polyp segmentation via multi-scale subtraction network. In L. Wang, Q. Dou, P. T. Fletcher, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 120–130). Cham: Springer.
[11]
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al. (2023). Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3992–4003). Piscataway: IEEE.
[12]
Li, Y., Hu, M., & Yang, X. (2023). Polyp-SAM: Transfer SAM for polyp segmentation. arXiv preprint. arXiv:2305.00293.
[15]
Gupta, S., Sikka, G., & Malik, A. (2023). A review on deep learning-based polyp segmentation for efficient colorectal cancer screening. In Proceedings of the 3rd International Conference on Secure Cyber Computing and Communication (pp. 501–506). Piscataway: IEEE.
[20]
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In D. Shen, T. Liu, T. M. Peters, et al. (Eds.), Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 234–241). Cham: Springer.
[21]
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3431–3440). Piscataway: IEEE.
[22]
Fang, Y., Chen, C., Yuan, Y., & Tong, K. (2019). Selective feature aggregation network with area-boundary constraints for polyp segmentation. In D. Shen, T. Liu, T. M. Peters, et al. (Eds.), Proceedings of the 22nd International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 302–310). Cham: Springer.
[23]
Jha, D., Smedsrud, P., Riegler, M., Johansen, D., De Lange, T., Halvorsen, P., et al. (2019). ResUNet++: An advanced architecture for medical image segmentation. In Proceedings of the IEEE International Symposium on Multimedia (pp. 225–2255). Piscataway: IEEE.
[24]
Zhong, J., Wang, W., Wu, H., Wen, Z., & Qin, J. (2020). PolypSeg: An efficient context-aware network for polyp segmentation from colonoscopy videos. In A. L. Martel, P. Abolmaesumi, D. Stoyanov, et al. (Eds.), Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 285–294). Cham: Springer.
[25]
Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., & Yu, Y. (2020). Adaptive context selection for polyp segmentation. In A. L. Martel, P. Abolmaesumi, D. Stoyanov, et al. (Eds.), Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 253–262). Cham: Springer.
[26]
Fan, D., Ji, G., Zhou, T., Chen, G., Fu, H., Shen, J., et al. (2020). PraNet: Parallel reverse attention network for polyp segmentation. In A. L. Martel, P. Abolmaesumi, D. Stoyanov, et al. (Eds.), Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 263–273). Cham: Springer.
[27]
Akbari, M., Mohrekesh, M., Nasr-Esfahani, E., Soroushmehr, S., Karimi, N., Samavi, S., et al. (2018). Polyp segmentation in colonoscopy images using fully convolutional network. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 69–72). Piscataway: IEEE.
[28]
Tomar, N., Jha, D., Ali, S., Johansen, H., Johansen, D., Riegler, M., et al. (2021). DDANet: Dual decoder attention network for automatic polyp segmentation. In A. del Bimbo, R. Cucchiara, S. Sclaroff, et al. (Eds.), Proceedings of the International Workshops and Challenges on Pattern Recognition (pp. 307–314). Cham: Springer.
[30]
Huang, C., Wu, H., & Lin, Y. (2021). HarDNet-MSEG: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint. arXiv:2101.07172.
[31]
Patel, K., Bur, A., & Wang, G. (2021). Enhanced U-Net: A feature enhancement network for polyp segmentation. In Proceedings of the 18th Conference on Robots and Vision (pp. 181–188). Piscataway: IEEE.
[32]
Tomar, N., Jha, D., Riegler, M., Johansen, H., Johansen, D., Rittscher, J., et al. (2021). FANet: A feedback attention network for improved biomedical image segmentation. arXiv preprint. arXiv:2103.17235.
[33]
Dong, B., Wang, W., Fan, D., Li, J., Fu, H., & Shao, L. (2021). Polyp-PVT: Polyp segmentation with pyramidvision transformers. arXiv preprint. arXiv: 2108.06932.
[34]
Kim, T., Lee, H., & Kim, D. (2021). UACANet: Uncertainty augmented context attention for polyp segmentation. In Proceedings of the 29th ACM International Conference on Multimedia (pp. 2167–2175). New York: ACM.
[35]
Sun, Y., Chen, G., Zhou, T., Zhang, Y., & Liu, N. (2021). Context-aware cross-level fusion network for camouflaged object detection. In Z.-H. Zhou (Ed.), Proceedings of the 30th International Joint Conference on Artificial Intelligence (pp. 1025–1031). Cham: Springer.
[37]
Zhang, Y., Liu, H., & Hu, Q. (2021). Transfuse: Fusing transformers and CNNs for medical image segmentation. In M. de Bruijne, P. C. Cattin, S. Cotin, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 14–24). Cham: Springer.
[38]
Wu, L., Hu, Z., Ji, Y., Luo, P., & Zhang, S. (2021). Multi-frame collaboration for effective endoscopic video polyp detection via spatial-temporal feature transformation. In M. de Bruijne, P. C. Cattin, S. Cotin, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 302–312). Cham: Springer.
[39]
Cheng, M., Kong, Z., Song, G., Tian, Y., Liang, Y., & Chen, J. (2021). Learnable oriented-derivative network for polyp segmentation. In M. de Bruijne, P. C. Cattin, S. Cotin, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 720–730). Cham: Springer.
[40]
Nguyen, T., Nguyen, T., Diep, G., Tran-Dinh, A., Nguyen, T., & Tran, M. (2021). CCBANet: Cascading context and balancing attention for polyp segmentation. In M. de Bruijne, P. C. Cattin, S. Cotin, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 633–643). Cham: Springer.
[41]
Shen, Y., Jia, X., & Meng, M. (2021). HRENet: A hard region enhancement network for polyp segmentation. In M. de Bruijne, P. C. Cattin, S. Cotin, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 559–568). Cham: Springer.
[42]
Srivastava, A., Chanda, S., Jha, D., Pal, U., & Ali, S. (2022). GMSRF-Net: An improved generalizability with global multi-scale residual fusion network for polyp segmentation. In Proceedings of the 26th International Conference on Pattern Recognition (pp. 4321–4327). Piscataway: IEEE.
[43]
Tomar, N., Jha, D., Bagci, U., & Ali, S. (2022). TGANet: Text-guided attention for improved polyp segmentation. In L. Wang, Q. Dou, P. T. Fletcher, et al. (Eds.), Proceedings of the 25th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 151–160). Cham: Springer.
[44]
Lou, A., Guan, S., Ko, H., & Loew, M. (2022). CaraNet: Context axial reverse attention network for segmentation of small medical objects. In O. Colliot, I. Isgum, B. A. Landman, et al. (Eds.), Medical imaging: Image Processing (pp. 81–92). Bellingham: SPIE.
[47]
Patel, K., Li, F., & Wang, G. (2022). FuzzyNet: A fuzzy attention module for polyp segmentation. In Proceedings of the 36th International Conference on Neural Information Processing Systems Workshops (pp. 1–11). Red Hook: Curran Associates.
[48]
Zhang, R., Lai, P., Wan, X., Fan, D., Gao, F., Wu, X., et al. (2022). Lesion-aware dynamic kernel for polyp segmentation. In L. Wang, Q. Dou, P. T. Fletcher, et al. (Eds.), Proceedings of the 25th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 99–109). Cham: Springer.
[49]
Liao, T., Yang, C., Lo, Y., Lai, K., Shen, P., & Lin, Y. (2022). HarDNet-DFUS: An enhanced harmonically-connected network for diabetic foot ulcer image segmentation and colonoscopy polyp segmentation. arXiv preprint. arXiv:2209.07313.
[50]
Qiu, Z., Wang, Z., Zhang, M., Xu, Z., Fan, J., & Xu, L. (2022). BDG-Net: Boundary distribution guided network for accurate polyp segmentation. In O. Colliot, I. Isgum, B. A. Landman, et al. (Eds.), Medical Imaging: Image Processing (pp. 792–799). Bellingham: SPIE.
[52]
Sanderson, E., & Matuszewski, B. (2022). FCN-transformer feature fusion for polyp segmentation. In Proceedings of the 26th Annual Conference on Medical Image Understanding and Analysis (pp. 892–907). Cham: Springer.
[53]
Yin, Z., Liang, K., Ma, Z., & Guo, J. (2022). Duplex contextual relation network for polyp segmentation. In Proceedings of the IEEE 19th International Symposium on Biomedical Imaging (pp. 1–5). Piscataway: IEEE.
[54]
Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., & Song, S. (2022). Stepwise feature fusion: Local guides global. In L. Wang, Q. Dou, P. T. Fletcher, et al. (Eds.), Proceedings of the 25th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 110–120). Cham: Springer.
[55]
Nguyen, M., Bui, T., van Nguyen, Q., Nguyen, T., & van Pham, T. (2022). LAPFormer: A light and accurate polyp segmentation transformer. arXiv preprint. arXiv:2210.04393.
[56]
Cai, L., Wu, M., Chen, L., Bai, W., Yang, M., Lyu, S., et al. (2022). Using guided self-attention with local information for polyp segmentation. In L. Wang, Q. Dou, P. T. Fletcher, et al. (Eds.), Proceedings of the 25th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 629–638). Cham: Springer.
[58]
Wei, J., Hu, Y., Li, G., Cui, S., Zhou, K. S., & Li, Z. (2022). BoxPolyp: Boost generalized polyp segmentation using extra coarse bounding box annotations. In L. Wang, Q. Dou, P. T. Fletcher, et al. (Eds.), Proceedings of the 25th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 67–77). Cham: Springer.
[59]
Xiao, Y., Chen, Z., Wan, L., Yu, L., & Zhu, L. (2022). ICBNet: Iterative context-boundary feedback network for polyp segmentation. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (pp. 1297–1304). Piscataway: IEEE.
[60]
Chen, R., Wang, X., Jin, B., Tu, J., Zhu, F., & Li, Y. (2022). CLD-Net: Complement local detail for medical small-object segmentation. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (pp. 942–947). Piscataway: IEEE.
[61]
Lu, L., Zhou, X., Chen, S., Chen, Z., Yu, J., Tang, H., et al. (2022). Boundary-aware polyp segmentation network. In S. Yu, Z. Zhang, P. C. Yuen, et al. (Eds.), Proceedings of the 5th Chinese Conference on Pattern Recognition and Computer Vision (pp. 66–77). Cham: Springer.
[62]
Tang, F., Xu, Z., Huang, Q., Wang, J., Hou, X., Su, J., et al. (2023). DuAT: Dual-aggregation transformer network for medical image segmentation. In Q. Liu, H. Wang, Z. Ma, et al. (Eds.), Proceedings of the 6th Chinese Conference on Pattern Recognition and Computer Vision (pp. 343–356). Cham: Springer.
[67]
Hu, K., Chen, W., Sun, Y., Hu, X., Zhou, Q., & Zheng, Z. (2023). PPNet: Pyramid pooling based network for polyp segmentation. Computers in Biology and Medicine, 160, 107028.
[68]
Wang, Y., Deng, Z., Lou, Q., Hu, S., Choi, K., & Wang, S. (2023). Cooperation learning enhanced colonic polyp segmentation based on Transformer-CNN fusion. arXiv preprint. arXiv:2301.06892.
[69]
Tomar, N., Jha, D., & Bagci, U. (2023). DilatedSegNet: A deep dilated segmentation network for polyp segmentation. In D.-T. Dang-Nguyen, C. Gurrin, M. A. Larson, et al. (Eds.), Proceedings of the 29th International Conference on Multimedia Modeling (pp. 334–344). Cham: Springer.
[71]
Nguyen-Mau, T., Trinh, Q., Bui, N., Thi, P., Nguyen, M., Cao, X., et al. (2023). PEFNet: Positional embedding feature for polyp segmentation. In D.-T. Dang-Nguyen, C. Gurrin, M. A. Larson, et al. (Eds.), Proceedings of the 29th International Conference on Multimedia Modeling (pp. 240–251). Cham: Springer.
[72]
Chang, Q., Ahmad, D., Toth, J., Bascom, R., & Higgins, W. (2023). ESFPNet: Efficient deep learning architecture for real-time lesion segmentation in autofluorescence bronchoscopic video. In B. S. Gimi & A. Krol (Eds.), Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging (pp. 1–7). Bellingham: SPIE.
[74]
Rahman, M., & Marculescu, R. (2023). Medical image segmentation via cascaded attention decoding. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 6222–6231). Piscataway: IEEE.
[77]
Lu, L., Barbu, A., Wolf, M., Liang, J., Salganicoff, M., & Comaniciu, D. (2008). Accurate polyp segmentation for 3D CT colongraphy using multi-staged probabilistic binary learning and compositional model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8). Piscataway: IEEE.
[78]
Gross, S., Kennel, M., Stehle, T., Wulff, J., Tischendorf, J., Trautwein, C., et al. (2009). Polyp segmentation in NBI colonoscopy. In H.-P. Meinzer, T. M. Deserno, H. Handels, et al. (Eds.), Bildverarbeitung für die Medizin 2009: Algorithmen—Systeme—Anwendungen Proceedings des Workshops (pp. 252–256). Cham: Springer.
[81]
Wang, X., Ding, H., & Jiang, X. (2019). Dermoscopic image segmentation through the enhanced high-level parsing and class weighted loss. In Proceedings of the IEEE International Conference on Image Processing (pp. 245–249). Piscataway: IEEE.
[85]
Zhao, X., Wu, Z., Tan, S., Fan, D., Li, Z., Wan, X., et al. (2022). Semi-supervised spatial temporal attention network for video polyp segmentation. In L. Wang, Q. Dou, P. T. Fletcher, et al. (Eds.), Proceedings of the 25th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 456–466). Cham: Springer.
[86]
Ji, G., Chou, Y., Fan, D., Chen, G., Fu, H., Jha, D., et al. (2021). Progressively normalized self-attention network for video polyp segmentation. In M. de Bruijne, P. C. Cattin, S. Cotin, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 142–152). Cham: Springer.
[87]
Jha, D., Tomar, N., Ali, S., Riegler, M., Johansen, H., Johansen, D., et al. (2021). NanoNet: Real-time polyp segmentation in video capsule endoscopy and colonoscopy. In Proceedings of the IEEE 34th International Symposium on Computer-based Medical Systems (pp. 37–43). Piscataway: IEEE.
[88]
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4510–4520). Piscataway: IEEE.
[89]
Ma, Y., Chen, X., Cheng, K., Li, Y., & Sun, B. (2021). LDPolypVideo benchmark: A large-scale colonoscopy video dataset of diverse polyps. In M. de Bruijne, P. C. Cattin, S. Cotin, et al. (Eds.), Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 387–396). Cham: Springer.
[90]
Wang, A., Xu, M., Zhang, Y., Islam, M., & Ren, H. (2023). S2ME: Spatial-spectral mutual teaching and ensemble learning for scribble-supervised polyp segmentation. In H. Greenspan, A. Madabhushi, P. Mousavi, et al. (Eds.), Proceedings of the 26th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 35–45). Cham: Springer.
[93]
Jha, D., Smedsrud, P., Riegler, M., Halvorsen, P., de Lange, T., Johansen, D., et al. (2020). Kvasir-SEG: A segmented polyp dataset. In Y. M. Ro, W.-H. Cheng, J. Kim, et al. (Eds.), Proceedings of the 26th International Conference on Multimedia Modeling (pp. 451–462). Cham: Springer.
[98]
Perazzi, F., Krähenbühl, P., Pritch, Y., & Hornung, A. (2012). Saliency filters: Contrast based filtering for salient region detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 733–740). Piscataway: IEEE.
[99]
Fan, D., Cheng, M., Liu, Y., Li, T., & Borji, A. (2017). Structure-measure: A new way to evaluate foreground maps. In Proceedings of the IEEE International Conference on Computer Vision (pp. 4548–4557). Piscataway: IEEE.
[100]
Fan, D., Gong, C., Cao, Y., Ren, B., Cheng, M., & Borji, A. (2018). Enhanced-alignment measure for binary foreground map evaluation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (pp. 698–704). Cham: Springer.
[101]
Zhou, Z., Rahman Siddiquee, M., Tajbakhsh, N., & Liang, J. (2018). UNet++: A nested UNet architecture for medical image segmentation. In D. Stoyanov, Z. Taylor, G. Carneiro, et al. (Eds.), Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (pp. 3–11). Cham: Springer.
[102]
Zhou, T., Zhang, Y., Chen, G., Zhou, Y., Wu, Y., & Fan, D. (2023). Edge-aware feature aggregation network for polyp segmentation. arXiv preprint. arXiv:2309.10523.
[103]
Zhao, X., Jia, H., Pang, Y., Lv, L., Tian, F., Zhang, L., et al. (2023). M2SNet: Multi-scale in multi-scale subtraction network for medical image segmentation. arXiv preprint. arXiv:2303.10894.
[104]
Zhou, T., Zhang, Y., Zhou, Y., Wu, Y., & Gong, C. (2023). Can SAM segment polyps? arXiv preprint. arXiv:2304.07583.
[105]
Shan, L., Li, X., & Wang, W. (2021). Decouple the high-frequency and low-frequency information of images for semantic segmentation. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1805–1809). Piscataway: IEEE.
[106]
Cong, R., Sun, M., Zhang, S., Zhou, X., Zhang, W., & Zhao, Y. (2023). Frequency perception network for camouflaged object detection. In A. El-Saddik, T. Mei, R. Cucchiara, et al. (Eds.), Proceedings of the 31st ACM International Conference on Multimedia (pp. 1179–1189). New York: ACM.
[107]
Wu, H., Chen, G., Wen, Z., & Qin, J. (2021). Collaborative and adversarial learning of focused and dispersive representations for semi-supervised polyp segmentation. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3489–3498). Piscataway: IEEE.
[108]
Cho, H., Han, Y., & Kim, W. (2023). Anti-adversarial consistency regularization for data augmentation: Applications to robust medical image segmentation. In H. Greenspan, A. Madabhushi, P. Mousavi, et al. (Eds.), Proceedings of the 26th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 555–566). Cham: Springer.
[109]
Judge, T., Bernard, O., Cho Kim, W., Gomez, A., Chartsias, A., & Jodoin, P. (2023). Asymmetric contour uncertainty estimation for medical image segmentation. In H. Greenspan, A. Madabhushi, P. Mousavi, et al. (Eds.), Proceedings of the 26th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 210–220). Cham: Springer.
[110]
Wei, Q., Yu, L., Li, X., Shao, W., Xie, C., Xing, L., et al. (2023). Consistency-guided meta-learning for bootstrapping semi-supervised medical image segmentation. In H. Greenspan, A. Madabhushi, P. Mousavi, et al. (Eds.), Proceedings of the 26th International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 183–193). Cham: Springer.
[115]
Feng, R., Lei, B., Wang, W., Chen, T., Chen, J., Chen, D., et al. (2020). SSN: A stair-shape network for real-time polyp segmentation in colonoscopy images. In Proceedings of the IEEE 17th International Symposium on Biomedical Imaging (pp. 225–229). Piscataway: IEEE.
[116]
Wichakam, I., Panboonyuen, T., Udomcharoenchaikit, C., & Vateekul, P. (2018). Real-time polyps segmentation for colonoscopy video frames using compressed fully convolutional network. In K. Schoeffmann, T. H. Chalidabhongse, C.-W. Ngo, et al. (Eds.), Proceedings of the 24th International Conference on Multimedia Modeling (pp. 393–404). Cham: Springer.
[117]
Tomar, N., Shergill, A., Rieders, B., Bagci, U., & Jha, D. (2022). TransResU-Net: Transformer based ResU-Net for real-time colonoscopy polyp segmentation. arXiv preprint. arXiv:2206.08985.
[118]
Wu, H., Zhong, J., Wang, W., Wen, Z., & Qin, J. (2021). Precise yet efficient semantic calibration and refinement in ConvNets for real-time polyp segmentation from colonoscopy videos. In Proceedings of the AAAI Conference on Artificial Intelligence, (pp. 2916–2924). Palo Alto: AAAI Press.
[120]
Liu, Q., Chen, C., Qin, J., Dou, Q., & Heng, P. (2021). FedDG: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1013–1023). Piscataway: IEEE.