AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article

Fully Hodge–Newton Decomposable Shimura Varieties

Fakultät für Mathematik/Institut für Experimentelle Mathematik, Universität Duisburg-Essen, 45117, Essen, Germany
Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
Show Author Information

Abstract

The motivation for this paper is the study of arithmetic properties of Shimura varieties, in particular the Newton stratification of the special fiber of a suitable integral model at a prime with parahoric level structure. This is closely related to the structure of Rapoport–Zink spaces and of affine Deligne–Lusztig varieties. We prove a Hodge–Newton decomposition for affine Deligne–Lusztig varieties and for the special fibers of Rapoport–Zink spaces, relating these spaces to analogous ones defined in terms of Levi subgroups, under a certain condition (Hodge–Newton decomposability) which can be phrased in combinatorial terms. Second, we study the Shimura varieties in which every non-basic σ-isogeny class is Hodge–Newton decomposable. We show that (assuming the axioms of He and Rapoport in Manuscr. Math. 152(3–4): 317–343, 2017) this condition is equivalent to nice conditions on either the basic locus or on all the non-basic Newton strata of the Shimura varieties. We also give a complete classification of Shimura varieties satisfying these conditions. While previous results along these lines often have restrictions to hyperspecial (or at least maximal parahoric) level structure, and/or quasi-split underlying group, we handle the cases of arbitrary parahoric level structure and of possibly non-quasi-split underlying groups. This results in a large number of new cases of Shimura varieties where a simple description of the basic locus can be expected. As a striking consequence of the results, we obtain that this property is independent of the parahoric subgroup chosen as level structure. We expect that our conditions are closely related to the question whether the weakly admissible and admissible loci coincide.

References

1

Bhatt, B., Scholze, P.: Projectivity of the Witt vector Grassmannian. Invent. Math. 209(2), 329–423 (2017)

2
Borel, A.: Automorphic L-Functions. In: Borel, A., Casselman, W. (eds. ) Automorphic Forms, Representations, and L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33, Part 2, 27–61 (1979)
3
Bourbaki, N.: Groupes et algèbres de Lie, Ch. 4, 5, 6, Masson, Paris (1981)
4

Boyer, P.: Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples. Invent. Math. 177(2), 239–280 (2009)

5

Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée, Publ. Math. IHES 60, 197–376 (1984)

6

Caraiani, A., Scholze, P.: On the generic part of the cohomology of compact unitary Shimura varieties. Ann. Math. (2) 186(3), 649–766 (2017)

7
Chen, M., Fargues, L., Shen, X.: On the structure of some p-adic period domains. arXiv: 1710.06935 (2017)
8

Chen, M., Kisin, M., Viehmann, E.: Connected components of affine Deligne–Lusztig varieties in mixed characteristic. Compos. Math. 151(9), 1697–1762 (2015)

9

Dyer, M.: Reflection subgroups of Coxeter systems. J. Algebra 135(1), 57–73 (1990)

10
Fargues, L.: Letter to M. Rapoport (2015)
11

Görtz, U., Haines, T., Kottwitz, R., Reuman, D.: Affine Deligne–Lusztig varieties in affine flag varieties. Compos. Math. 146(5), 1339–1382 (2010)

12

Görtz, U., He, X.: Basic loci of Coxeter type in Shimura varieties. Camb. J. Math. 3(3), 323–353 (2015)

13

Görtz, U., He, X., Nie, S.: P-alcoves and nonemptiness of affine Deligne–Lusztig varieties. Ann. Sci. Éc. Norm. Sup. (4) 48(3), 647–665 (2015)

14

Grothendieck, A., Dieudonné, J.: Éléments de Géométrie Algébrique I, Grundlehren Math. Wiss. 166 (2nd ed. ), Springer, New York (1971)

15

Haines, T., He, X.: Vertexwise criteria for admissibility of alcoves. Am. J. Math. 139(3), 769–784 (2017)

16
Hamacher, P.: On the Newton stratification in the good reduction of Shimura varieties. arXiv: 1605.05540v1 (2016)
17
Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001)
18

Hartl, U.: On a conjecture of Rapoport and Zink. Invent. Math. 193(3), 627–696 (2013)

19
He, X.: G-stable pieces and partial flag varieties. In: Representation Theory, Contemporary Mathematics 478, American Mathematics Society, pp. 61–70 (2009)
20

He, X.: Geometric and homological properties of affine Deligne–Lusztig varieties. Ann. Math. (2) 179(1), 367–404 (2014)

21

He, X.: Kottwitz–Rapoport conjecture on unions of affine Deligne–Lusztig varieties. Ann. Sci. Éc. Norm. Sup. (4) 49(5), 1125–1141 (2016)

22
He, X.: Hecke algebras and p-adic groups. In: Current Developments in Mathematics 2015. International Press, Somerville, MA, pp. 73–135 (2016)
23

He, X., Nie, S.: Minimal length elements of extended affine Weyl groups. Compos. Math. 150(11), 1903–1927 (2014)

24

He, X., Nie, S.: On the acceptable elements. IMRN 3, 907–931 (2018)

25

He, X., Rapoport, M.: Stratifications in the reduction of Shimura varieties. Manuscr. Math. 152(3–4), 317–343 (2017)

26
He, X., Zhou, R.: On the connected components of affine Deligne–Lusztig varieties. arXiv: 1610.06879 (2016)
27

Helm, D., Tian, Y., Xiao, L.: Tate cycles on some unitary Shimura varieties mod p. Algebra Number Theory 11(10), 2213–2288 (2017)

28
Hong, S.: On the Hodge–Newton filtration for p-divisible groups of Hodge type. Math. Z. https://doi.org/10.1007/s00209-018-2092-3 (2018) (to appear)
29

Hong, S.: Harris–Viehmann conjecture for Hodge–Newton reducible Rapoport–Zink spaces. J. Lond. Math. Soc. (2) 98(3), 733–752 (2018)

30

Howard, B., Pappas, G.: On the supersingular locus of the GU(2,2) Shimura variety. Algebra Number Theory 8(7), 1659–1699 (2014)

31

Howard, B., Pappas, G.: Rapoport–Zink spaces for spinor groups. Compos. Math. 153(5), 1050–1118 (2017)

32
Kaiser, C.: Ein getwistetes fundamentales lemma für die GSp4, Ph. D. thesis, Universität Bonn, Mathematisches Institut, Bonn (1997)
33

Katsura, T., Oort, F.: Families of supersingular abelian surfaces. Compos. Math. 62(2), 107–167 (1987)

34

Katz, H.: Slope filtration of F-crystals. Astérisque 63, 113–163 (1979)

35
Kim, W.: Rapoport–Zink spaces of Hodge type. Forum Math. Sigma 6, e8, 110 pp. (2018)
36

Kottwitz, R.: Stable trace formula: Cuspidal tempered terms. Duke Math. J. 51(3), 611–650 (1984)

37

Kottwitz, R.: Isocrystals with additional structure. Compos. Math. 56(2), 201–220 (1985)

38

Kottwitz, R.: Isocrystals with additional structure. II. Compos. Math. 109(3), 255–339 (1997)

39

Kottwitz, R.: On the Hodge–Newton decomposition for split groups. IMRN 26, 1433–1447 (2003)

40

Kottwitz, R., Rapoport, M.: Minuscule alcoves for GLn and GSp2n. Manuscr. Math. 102(4), 403–428 (2000)

41

Kudla, S., Rapoport, M.: Arithmetic Hirzebruch–Zagier cycles. J. Reine Angew. Math. 515, 155–244 (1999)

42

Kudla, S., Rapoport, M.: Special cycles on unitary Shimura varieties I. Unramified local theory. Invent. Math. 184(3), 629–682 (2011)

43

Mantovan, E.: On the cohomology of certain PEL type Shimura varieties. Duke Math. J. 129(3), 573–610 (2005)

44

Mantovan, E.: On non-basic Rapoport–Zink spaces. Ann. Sci. Éc. Norm. Supér. (4) 41(5), 671–716 (2008)

45

Nie, S.: Fundamental elements of an affine Weyl group. Math. Ann. 362(1–2), 485–499 (2015)

46

Rapoport, M.: A guide to the reduction modulo p of Shimura varieties. Astérisque 298, 271–318 (2005)

47

Rapoport, M.: Accessible and weakly accessible period domains, Appendix to: P. Scholze, On the p-adic cohomology of the Lubin–Tate tower. Ann. Sci. Éc. Norm. Supér. (4) 51(4), 811–863 (2018)

48

Rapoport, M., Terstiege, U., Wilson, S.: The supersingular locus of the Shimura variety for GU(1,n1) over a ramified prime. Math. Z. 276, 1165–1188 (2014)

49

Rapoport, M., Terstiege, U., Zhang, W.: On the arithmetic fundamental lemma in the minuscule case. Compos. Math. 149(10), 1631–1666 (2013)

50

Rapoport, M., Viehmann, E.: Towards a theory of local Shimura varieties. Münster J. Math. 7(1), 273–326 (2014)

51

Rapoport, M., Zink, T.: A finiteness theorem in the Bruhat–Tits building: an application of Landvogt's embedding theorem. Indag. Math. N.S. 10(3), 449–458 (1999)

52

Shen, X.: On the Hodge–Newton filtration for p-divisible groups with additional structures. IMRN 13, 3582–3631 (2014)

53

Tian, Y., Xiao, L.: On Goren–Oort stratification for quaternionic Shimura varieties. Compos. Math. 152(10), 2134–2220 (2016)

54
Tian, Y., Xiao, L.: Tate cycles on some quaternionic Shimura varieties mod p. arXiv: 1410.2321 (2014)
55
Tits, J.: Reductive groups over local fields. In: Borel, A., Casselman, W. (eds. ), Automorphic Forms, Representations, and L-functions. Proceedings of Symposia in Pure Mathematics, vol. 33, Part 1, pp. 29–69 (1979)
56

Viehmann, E.: Truncations of level 1 of elements in the loop group of a reductive group. Ann. Math. (2) 179(3), 1009–1040 (2014)

57

Vollaard, I.: The supersingular locus of the Shimura variety for GU(1,s). Can. J. Math. 62(3), 668–720 (2010)

58

Vollaard, I., Wedhorn, T.: The supersingular locus of the Shimura variety of GU(1,n1) II. Invent. Math. 184(3), 591–627 (2011)

59
Wu, H.: The supersingular locus of unitary Shimura varieties with exotic good reduction. Ph. D. thesis, University of Duisburg–Essen. arXiv: 1609.08775 (2016)
60

Yu, C. -F.: On the supersingular locus in Hilbert–Blumenthal 4-folds. J. Algebraic Geom. 12(4), 653–698 (2003)

61
Zhou, R.: Mod-p isogeny classes on Shimura varieties with parahoric level structure. arXiv: 1707.09685 (2017)
62

Zhu, X.: Affine Grassmannians and the geometric Satake in mixed characteristic. Ann. Math. 185(2), 403–492 (2017)

Peking Mathematical Journal
Pages 99-154
Cite this article:
Görtz, U., He, X. & Nie, S. Fully Hodge–Newton Decomposable Shimura Varieties. Peking Math J 2, 99-154 (2019). https://doi.org/10.1007/s42543-019-00013-2

294

Views

18

Crossref

Altmetrics

Received: 03 April 2018
Revised: 10 January 2019
Accepted: 05 March 2019
Published: 05 August 2019
© Peking University 2019
Return