Journal Home > Volume 7 , Issue 3

A diffractive sail is a solar sail whose exposed surface is covered by an advanced diffractive metamaterial film with engineered optical properties. This study examines the optimal performance of a diffractive solar sail with a Sun-facing attitude in a typical orbit-to-orbit heliocentric transfer. A Sun-facing attitude, which can be passively maintained through the suitable design of the sail shape, is obtained when the sail nominal plane is perpendicular to the Sun–spacecraft line. Unlike an ideal reflective sail, a Sun-facing diffractive sail generates a large transverse thrust component that can be effectively exploited to change the orbital angular momentum. Using a recent thrust model, this study determines the optimal control law of a Sun-facing ideal diffractive sail and simulates the minimum transfer times for a set of interplanetary mission scenarios. It also quantifies the performance difference between Sun-facing diffractive sail and reflective sail. A case study presents the results of a potential mission to the asteroid 16 Psyche.


menu
Abstract
Full text
Outline
About this article

Optimal interplanetary trajectories for Sun-facing ideal diffractive sails

Show Author's information Alessandro A. QuartaGiovanni MengaliMarco BassettoLorenzo Niccolai( )
Department of Civil and Industrial Engineering, University of Pisa, I-56122 Pisa, Italy

Abstract

A diffractive sail is a solar sail whose exposed surface is covered by an advanced diffractive metamaterial film with engineered optical properties. This study examines the optimal performance of a diffractive solar sail with a Sun-facing attitude in a typical orbit-to-orbit heliocentric transfer. A Sun-facing attitude, which can be passively maintained through the suitable design of the sail shape, is obtained when the sail nominal plane is perpendicular to the Sun–spacecraft line. Unlike an ideal reflective sail, a Sun-facing diffractive sail generates a large transverse thrust component that can be effectively exploited to change the orbital angular momentum. Using a recent thrust model, this study determines the optimal control law of a Sun-facing ideal diffractive sail and simulates the minimum transfer times for a set of interplanetary mission scenarios. It also quantifies the performance difference between Sun-facing diffractive sail and reflective sail. A case study presents the results of a potential mission to the asteroid 16 Psyche.

Keywords: trajectory optimization, interplanetary transfer, diffractive solar sail, Sun-facing sail

References(60)

[1]

Fu, B., Sperber, E., Eke, F. Solar sail technology—A state of the art review. Progress in Aerospace Sciences, 2016, 86: 1–19.

[2]

Gong, S. P., MacDonald, M. Review on solar sail technology. Astrodynamics, 2019, 3(2): 93–125.

[3]

Bassetto, M., Quarta, A. A., Caruso, A., Mengali, G. Optimal heliocentric transfers of a Sun-facing heliogyro. Aerospace Science and Technology, 2021, 119: 107094.

[4]

Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Yonekura, K., Hoshino, H., Kawaguchi, J. Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronautica, 2013, 82(2): 183–188.

[5]

Tsuda, Y., Ono, G., Mimasu, Y. Classification of solar sail attitude dynamics with and without angular momentum. Astrodynamics, 2019, 3(3): 207–216.

[6]

Mori, O., Okuizumi, N., Chujo, T., Takao, Y. Improvement of sail storage and deployment mechanism for spin-type solar power sail. Astrodynamics, 2020, 4(3): 223–231.

[7]

Pezent, J., Sood, R., Heaton, A. High-fidelity contingency trajectory design and analysis for NASA’s near-earth asteroid (NEA) Scout solar sail mission. Acta Astronautica, 2019, 159: 385–396.

[8]

Pezent, J. B., Sood, R., Heaton, A., Miller, K., Johnson, L. Preliminary trajectory design for NASA’s Solar Cruiser: A technology demonstration mission. Acta Astronautica, 2021, 183: 134–140.

[9]

McInnes, C. R. Solar Sailing: Technology, Dynamics and Mission Applications. London: Springer, 1999: 13–14, 46–54.

DOI
[10]

Zola, D., Circi, C., Vulpetti, G., Scaglione, S. Photon momentum change of quasi-smooth solar sails. Journal of the Optical Society of America A, 2018, 35(8): 1261–1271.

[11]

Pino, T., Circi, C., Vulpetti, G. Wrinkling analysis for small solar-photon sails: An experimental and analytic approach for trajectory design. Advances in Space Research, 2019, 63(11): 3675–3690.

[12]

Davoyan, A. R., Munday, J. N., Tabiryan, N., Swartzlander, G. A., Johnson, L. Photonic materials for interstellar solar sailing. Optica, 2021, 8(5): 722–734.

[13]

Firuzi, S., Gong, S. P. Refractive sail and its applications in solar sailing. Aerospace Science and Technology, 2018, 77: 362–372.

[14]

Firuzi, S., Song, Y., Gong, S. P. Gradient-index solar sail and its optimal orbital control. Aerospace Science and Technology, 2021, 119: 107103.

[15]

Aspnes, E., Milster, T. D., Visscher, K. Optical force model based on sequential ray tracing. Applied Optics, 2009, 48(9): 1642–1650.

[16]

Bassetto, M., Caruso, A., Quarta, A. A., Mengali, G. Optimal steering law of refractive sail. Advances in Space Research, 2021, 67(9): 2855–2864.

[17]

Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 1992, 61(2): 569–582.

[18]

Swartzlander, G. A. Radiation pressure on a diffractive sailcraft. Journal of the Optical Society of America B, 2017, 34(6): C25–C30.

[19]

Swartzlander, G. A. Flying on a rainbow: A solar-driven diffractive sailcraft. Journal of the British Interplanetary Society, 2018, 71(4): 130–132.

[20]

Srivastava, P. R., Swartzlander, G. A. Optomechanics of a stable diffractive axicon light sail. The European Physical Journal Plus, 2020, 135(7): 570.

[21]

Serak, S. V., Roberts, D. E., Hwang, J. Y., Nersisyan, S. R., Tabiryan, N. V., Bunning, T. J., Steeves, D. M., Kimball, B. R. Diffractive waveplate arrays. Journal of the Optical Society of America B, 2017, 34(5): B56–B63.

[22]

Srivastava, P. R., Chu, Y.-J. L., Swartzlander, G. A. Stable diffractive beam rider. Optics Letters, 2019, 44(12): 3082–3085.

[23]

Chu, Y., Firuzi, S., Gong, S. P. Controllable liquid crystal diffractive sail and its potential applications. Acta Astronautica, 2021, 182: 37–45.

[24]

Chu,, Meem, M., Srivastava, P. R., Menon, R., Swartzlander, G. A. Parametric control of a diffractive axicon beam rider. Optics Letters, 2021, 46(20): 5141–5144.

[25]

Dubill, A. L., Swartzlander, G. A. Circumnavigating the Sun with diffractive solar sails. Acta Astronautica, 2021, 187: 190–195.

[26]

Quarta, A. A., Mengali, G., Niccolai, L. Smart dust option for geomagnetic tail exploration. Astrodynamics, 2019, 3(3): 217–230.

[27]

Quarta, A. A., Mengali, G., Denti, E. Optimal in-orbit repositioning of Sun-pointing smart dust. Acta Astronautica, 2019, 154: 278–285.

[28]

Niccolai, L., Bassetto, M., Quarta, A. A., Mengali, G. A review of Smart Dust architecture, dynamics, and mission applications. Progress in Aerospace Sciences, 2019, 106: 1–14.

[29]

Vulpetti, G., Circi, C., Pino, T. Coronal Mass Ejection early-warning mission by solar-photon sailcraft. Acta Astronautica, 2017, 140: 113–125.

[30]

Bassetto, M., Niccolai, L., Boni, L., Mengali, G., Quarta, A. A., Circi, C., Pizzurro, S., Pizzarelli, M., Pellegrini, R. C., Cavallini, E. Sliding mode control for attitude maneuvers of Helianthus solar sail. Acta Astronautica, 2022, 198: 100–110.

[31]

Caruso, A., Quarta, A. A., Mengali, G. Comparison between direct and indirect approach to solar sail circle-to-circle orbit raising optimization. Astrodynamics, 2019, 3(3): 273–284.

[32]

Quarta, A. A., Mengali, G., Bassetto, M. Optimal solar sail transfers to circular Earth-synchronous displaced orbits. Astrodynamics, 2020, 4(3): 193–204.

[33]

Heiligers, J., Fernandez, J. M., Stohlman, O. R., Wilkie, W. K. Trajectory design for a solar-sail mission to asteroid 2016 HO3. Astrodynamics, 2019, 3(3): 231–246.

[34]

Tsuda, Y., Takeuchi, H., Ogawa, N., Ono, G., Kikuchi, S., Oki, Y., Ishiguro, M., Kuroda, D., Urakawa, S., Okumura, S. I., et al. Rendezvous to asteroid with highly uncertain ephemeris: Hayabusa2’s Ryugu-approach operation result. Astrodynamics, 2020, 4(2): 137–147.

[35]

Mori, O., Matsumoto, J., Chujo, T., Matsushita, M., Kato, H., Saiki, T., Tsuda, Y., Kawaguchi, J., Terui, F., Mimasu, Y., et al. Solar power sail mission of OKEANOS. Astrodynamics, 2020, 4(3): 233–248.

[36]

Walker, M. J. H., Ireland, B., Owens, J. A set modified equinoctial orbit elements. Celestial Mechanics, 1985, 36(4): 409–419.

[37]

Walker, M. J. H. A set of modified equinoctial orbit elements. Celestial Mechanics, 1986, 38(4): 391–392.

[38]

Betts, J. T. Very low-thrust trajectory optimization using a direct SQP method. Journal of Computational and Applied Mathematics, 2000, 120(1–2): 27–40.

[39]
Wright, J. L. Space Sailing. Taylor & Francis, 1992: 223–233.
[40]

Bassetto, M., Quarta, A. A., Mengali, G., Cipolla, V. Trajectory analysis of a Sun-facing solar sail with optical degradation. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1727–1732.

[41]

Bassetto, M., Quarta, A. A., Mengali, G., Cipolla, V. Spiral trajectories induced by radial thrust with applications to generalized sails. Astrodynamics, 2021, 5(2): 121–137.

[42]

Mengali, G., Quarta, A. A. Optimal control laws for axially symmetric solar sails. Journal of Spacecraft and Rockets, 2005, 42(6): 1130–1133.

[43]

McInnes, C. R. Passive control of displaced solar sail orbits. Journal of Guidance, Control, and Dynamics, 1998, 21(6): 975–982.

[44]
Pathak, S. Photonics integrated circuits. In: Nanoelectronics. Amsterdam: Elsevier, 2019: 219–270.
DOI
[45]

Dachwald, B., Mengali, G., Quarta, A. A., MacDonald, M. Parametric model and optimal control of solar sails with optical degradation. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1170–1178.

[46]

Vulpetti, G., Apponi, D., Zeng, X. Y., Circi, C. Wrinkling analysis of solar-photon sails. Advances in Space Research, 2021, 67(9): 2669–2687.

[47]

Bianchi, C., Niccolai, L., Mengali, G., Quarta, A. A. Collinear artificial equilibrium point maintenance with a wrinkled solar sail. Aerospace Science and Technology, 2021, 119: 107150.

[48]

Mengali, G., Quarta, A. A. Optimal three-dimensional interplanetary rendezvous using non-ideal solar sail. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 173–177.

[49]

Caruso, A., Niccolai, L., Quarta, A. A., Mengali, G. Effects of attitude constraints on solar sail optimal interplanetary trajectories. Acta Astronautica, 2020, 177: 39–47.

[50]

Mengali, G., Quarta, A. A. Rapid solar sail rendezvous missions to asteroid 99942 Apophis. Journal of Spacecraft and Rockets, 2009, 46(1): 134–140.

[51]

Stengel, R. F. Optimal Control and Estimation. Dover Publications, 1994: 222–254.

[52]

Betts, J. T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193–207.

[53]

Bryson, A. E., Ho, Y. C. Applied Optimal Control. New York: Hemisphere Publishing Corporation, 1975: 71–89.

[54]

Shampine, L. F., Reichelt, M. W. The MATLAB ODE suite. SIAM Journal on Scientific Computing, 1997, 18(1): 1–22.

[55]
Palmeri, F., Tortorici, D., Laurenzi, S., Circi, C., Santonicola, M. G., Pizzarelli, M., Pizzurro, S., Pellegrini, R., Cavallini, E. Structural design of booms for the solar sail of helianthus sailcraft. In: Proceedings of the 73rd International Astronautical Congress, Paris, France, 2022.
[56]

Quarta, A. A., Mengali, G. Semi-analytical method for the analysis of solar sail heliocentric orbit raising. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 330–335.

[57]
Sirohi, R., Moore, R. R., Deforrest, L. R., Thornton, M. S., Larson, K. L., Wenkert, D. D., Kazz, G. J. Psyche mission’s end-to-end information system architecture: Advantages, challenges, and operability. In: Space Operations. Cham: Springer, 2022: 107–139.
DOI
[58]

Elkins-Tanton, L., Asphaug, E., Bell, J., Bierson, C., Bills, B., Bottke, W., Courville, S., Dibb, S., Jun, I., Lawrence, D., et al. Distinguishing the origin of asteroid (16) Psyche. Space Science Reviews, 2022, 218(3): 17.

[59]

Jaumann, R., Bell, J., Polanskey, C., Raymond, C., Aspaugh, E., Bercovici, D., Bills, B., Binzel, R., Bottke, W., Christoph, J., et al. The psyche topography and geomorphology investigation. Space Science Reviews, 2022, 218(2): 7.

[60]

Collinson, G. A., Chen, L. J., Jian, L. K., Dorelli, J. The solar wind at (16) Psyche: Predictions for a metal world. The Astrophysical Journal Letters, 2022, 927(2): 202.

Publication history
Copyright
Rights and permissions

Publication history

Received: 20 October 2022
Accepted: 17 January 2023
Published: 16 June 2023
Issue date: September 2023

Copyright

© The Author(s) 2023

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return