Journal Home > Volume 7 , Issue 2

Relative navigation is a key enabling technology for space missions such as on-orbit servicing and space situational awareness. Given that there are several special advantages of space relative navigation using angles-only measurements from passive optical sensors, angles-only relative navigation is considered as one of the best potential approaches in the field of space relative navigation. However, angles-only relative navigation is well-known for its range observability problem. To overcome this observability problem, many studies have been conducted over the past decades. In this study, we present a comprehensive review of state-of-the-art space relative navigation based on angles-only measurements. The emphasis is on the observability problem and solutions to angles-only relative navigation, where the review of the solutions is categorized into four classes based on the intrinsic principle: complicated dynamics approach, multi-line of sight (multi-LOS) approach, sensor offset center-of-mass approach, and orbit maneuver approach. Then, the flight demonstration results of angles-only relative navigation in the two projects are briefly reviewed. Finally, conclusions of this study and recommendations for further research are presented.


menu
Abstract
Full text
Outline
About this article

Review of space relative navigation based on angles-only measurements

Show Author's information Baichun Gong1Sha Wang1Shuang Li1( )Xianqiang Li2( )
Advanced Space Technology Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China

Abstract

Relative navigation is a key enabling technology for space missions such as on-orbit servicing and space situational awareness. Given that there are several special advantages of space relative navigation using angles-only measurements from passive optical sensors, angles-only relative navigation is considered as one of the best potential approaches in the field of space relative navigation. However, angles-only relative navigation is well-known for its range observability problem. To overcome this observability problem, many studies have been conducted over the past decades. In this study, we present a comprehensive review of state-of-the-art space relative navigation based on angles-only measurements. The emphasis is on the observability problem and solutions to angles-only relative navigation, where the review of the solutions is categorized into four classes based on the intrinsic principle: complicated dynamics approach, multi-line of sight (multi-LOS) approach, sensor offset center-of-mass approach, and orbit maneuver approach. Then, the flight demonstration results of angles-only relative navigation in the two projects are briefly reviewed. Finally, conclusions of this study and recommendations for further research are presented.

Keywords: space relative navigation, relative orbit determination, angles-only measurement, observability

References(114)

[1]
[2]

Wang, B. C., Li, S., Mu, J. Z., Hao, X. L., Zhu, W. S., Hu, J. Q. Research advancements in key technologies for space-based situational awareness. Space: Science & Technology, 2020, 2020: 9802793.

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

Zhu, W. S., Mu, J. Z., Shao, C. B., Hu, J. Q., Wang, B. C., Wen, Z. K., Han, F., Li, S. System design for pose determination of spacecraft using time-of-flight sensors. Space: Science & Technology, 2022, 2022: 9763198.

[12]
Chari, R. J. Autonomous orbital rendevous using angles-only navigation. Master Thesis. Cambridge, USA: Massachusetts Institute of Technology, 2001.
[13]
Woffinden, D. Angles-only navigation for autonomous orbital rendezvous. Ph. D. Dissertation. Logan, USA: Utah State University, 2008.
[14]

Battin, R. An Introduction to the Mathematics and Methods of Astrodynamics. New York: AIAA, 1987: 297–312.

[15]

Curtis, H. Orbital Mechanics for Engineering Students, 3rd edn. New York: Elsevier, 2014.

[16]
Bingham, B. E., Geller, D. K. Preliminary orbit determination for orbital rendezvous using Gauss'method. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2007.
[17]
Schaeperkoetter, A. A comprehensive comparison between angles-only initial orbit determination techniques. Master Thesis. College Station, USA: Texas A & M University, 2011.
[18]
Schmidt, J., Geller, D., Chavez, F. Improving angles-only navigation performance by selecting sufficiently accurate accelerometers. In: Proceedings of the 23rd Annual AIAA/USU Conference on Small Satellites, Logan Utah, USA, 2009.
[19]

Karimi, R. R., Mortari, D. Initial orbit determination using multiple observations. Celestial Mechanics and Dynamical Astronomy, 2011, 109: 167–180.

[20]
Anderson, J. D. Theory of orbit determination. Part Ⅰ: Classical methods. Jet Propulsion Laboratory Technical Report No. 32-497, Contract No. NAS7-100. NASA, 1963.
[21]
Escobal, P. R. Methods of Orbit Determination. Florida, USA: Krieger Pub Co., 1965.
[22]
Karimi, R. R., Mortari, D. A performance based comparison of angle-only initial orbit determination methods. In: Proceedings of the Advances in the Astronautical Sciences Series AAS/AIAA Astrodynamics Conference, Hilton Head, USA, 2013: AAS 13-823.
[23]

Fadrique, F. M., Maté, A. Á., Grau, J. J., Sánchez, J. F., García, L. A. Comparison of angles only initial orbit determination algorithms for space debris cataloguing. Journal of Aerospace Engineering, Sciences and Applications, 2012, 4(1): 39–51.

[24]
Vallado, D. Evaluating gooding angles-only orbit determination of space based space surveillance measurements. Paper USR, 2010: USR 10-S4.5.
[25]

Gooding, R. H. A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight. Celestial Mechanics and Dynamical Astronomy, 1996, 66(4): 387–423.

[26]

Kaufman E., Lovell T. A., Lee, T. Nonlinear observability measure for relative orbit determination with angles-only measurements. The Journal of Astronautical Science, 2016, 63: 60–80.

[27]
Lovell T. A., Lee, T. Nonlinear observability for relative satellite orbits with angles-only measurements. In: Proceedings of 24th International Symposium on Space Flight Dynamics, 2014.
[28]
Newman, B. A., Pratt, E., Lovell, A., Duncan, E. Quadratic hexa-dimensional solution for relative orbit determination. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference, San Diego, USA, 2014: AIAA 2014-4309.
[29]
Newman, B. A., Lovell, T. A., Pratt, E., Duncan, E. Hybrid linear-nonlinear initial determination with single iteration refinement for relative motion. In: Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, USA, 2015.
[30]
Shubham, G., Sinclair, A. Initial relative orbit determination using second order dynamics and line-of-sight measurements. In: Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, USA, 2015.
[31]
Shubham, G. Initial relative-orbit determination using second-order dynamics and line-of-sight measurements, Master Thesis. Auburn, USA: Auburn University, 2015.
[32]

Gong, B. C., Ma, Y. Q., Zhang, W. F., Li, S., Li, X. Q. Deep-neural-network-based anglesonly relative orbit determination for space non-cooperative target. Acta Astronautica, 2022, https://doi.org/10.1016/j.actaastro.2022.09.024.

[33]
Grzymisch, J., Fichter, W., Casasco, M., Losa, D. A spherical coordinate parametrization for an in-orbit bearings-only navigation filter. In: Advances in Aerospace Guidance, Navigation and Control. Chu, Q., Mulder, B., Choukroun, D., van Kampen, E. J., de Visser, C., Looye, G., Eds. Berlin: Springer, 2013: 215–231.
[34]
Geller, D., Lovell, T. A. Initial relative orbit determination performance analysis in cylindrical coordinates using angles-only measurements. In: Proceedings of the 24th AAS/AIAA Space Flight Mechanics Meeting, New Mexico, USA, 2014.
[35]

Geller, D. K., Lovell, T. A. Angles-only initial relative orbit determination performance analysis using cylindrical coordinates. The Journal of the Astronautical Sciences, 2017, 64(1): 72–96.

[36]

Gong, B. C., Zhang, D. G., Zhang, W. F., Yuan, Y. H., Chen, X. Q. Angles-only relative navigation algorithm for space non-cooperative target in cylindrical frame. Journal of Chinese Inertial Technology, 2021, 29(6): 752–762. (in Chinese)

[37]
Yamamoto, T., Murakami N., Nakajima Y., Yamanaka, K. Navigation and trajectory design for Japanese active debris removal mission. In: Proceedings of the 24th International Symposium on Space Flight Dynamics, Maryland, USA, 2014.
[38]
Geller, D. K., Lovell, T. A. Non-iterative approximate solution to the angles-only initial relative orbit determination problem in spherical coordinates. In: Proceedings of the 26th AAS/AIAA Space Flight Mechanics Meeting, 2016.
[39]

Perez, A. C., Geller, D. K., Lovell, T. A. Non-iterative angles-only initial relative orbit determination with J2 perturbations. Acta Astronautica, 2018, 151: 146–159.

[40]
Perez, A. C., Lovell, T. A., Geller, D. K. Relative satellite motion solution using curvilinear coordinate frames. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2015.
[41]
Schmidt, J., Lovell, T. A. Estimating geometric aspects of relative satellite motion using angles-only measurements. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, USA, 2008: AIAA 2008-6604.
[42]

Tombasco, J., Axelrad, P. Observability of relative hybrid elements, given space-based angles-only observations. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1681–1686.

[43]

Gaias, G., D'Amico, S., Ardaens, J. S. Angles-only navigation to a noncooperative satellite using relative orbital elements. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 439–451.

[44]
Yim, J. R., Crassidis, J. L., Junkins, J. L. Autonomous orbit navigation of two spacecraft system using relative line of sight vector measurements. In: Proceedings of the AAS/AIAA Spaceflight Mechanics Conference, 2004: AAS 04-257.
[45]

Sullivan, J., D'Amico, S. Nonlinear Kalman filtering for improved angles-only navigation using relative orbital elements. Journal of Guidance, Control, and Dynamics, 2017, 40(9): 2183–2200.

[46]
Sullivan, J., Koenig, A., D'Amico, S. Improved maneuver-free approach to angles-only navigation for space rendezvous. In: Proceedings of the 26th AAS/AIAA Space Flight Mechanics, 2016: AAS 16-530.
[47]
Sullivan, J., Lovell, T. A., D'Amico, S. Angles-only navigation for autonomous on-orbit space situational awareness applications. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Snowbird, USA, 2018: AAS 18-468.
[48]

Ardaens, J. S., Gaias, G. A numerical approach to the problem of angles-only initial relative orbit determination in low earth orbit. Advances in Space Research, 2019, 63(12): 3884–3899.

[49]
Koenig, A. W., D'Amico S. Observability-aware numerical algorithm for angles-only initial relative orbit determination. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, USA, 2020: AAS 20-594.
[50]
Yates, M. W. Angles-only navigation technique for maneuver-free spacecraft proximity operations. Ph. D. Dissertation. Cambridge, USA: Massachusetts Institute of Technology, 2017.
[51]

Liu, G. M., Liao, Y., Wen, Y. L. Two-satellite formation-based non-cooperative space target integrated orbit determination. Journal of Astronautics, 2010, 31(9): 2095–2100. (in Chinese)

[52]

Chen, T., Xu, S. J. Approach guidance with double-line-of-sight measuring navigation constraint for autonomous rendezvous. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 678–687.

[53]

Wang, K., Chen, T., Xu, S. J. A method of double line-of-sight measurement relative navigation. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1084–1091. (in Chinese)

[54]

Su, J. M., Dong, Y. F. The orbit determination of non-cooperative maneuvering target by applying space-based bearing-only measurement. Aerospace Control, 2011, 29(3): 37–42. (in Chinese)

[55]

Zhai, G., Zhang, J. R., Zhang, Y. Co-localization of non-cooperative targets based on multiple space robot system. Robot, 2013, 35(2): 249–256. (in Chinese)

[56]

Gao, X. H., Liang, B., Pan, L. Distributed relative navigation of GEO non-cooperative target based on multiple line-of-sight measurements. Journal of Astronautics, 2013, 36(3): 292–299. (in Chinese)

[57]

Han, F., Liu, F. C., Wang, Z. L., Du, X., Liu, S. S., Liu, C. Z. Multi light-of-sight angles-only relative navigation by multi collaborative space robot. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 524147. (in Chinese)

[58]

LeGrand, K., DeMars, K., Pernicka, H. Bearings-only initial relative orbit determination. Journal of Guidance, Control, and Dynamics, 2015, 38(9): 1699–1713.

[59]
LeGrand, K. Space-based relative multitarget tracking. Master Thesis. Rolla, USA: Missouri University of Science and Technology, 2015.
[60]

Jia, B., Pham, K. D., Blasch, E., Shen, D., Wang, Z. H., Chen, G. S. Cooperative space object tracking using space-based optical sensors via consensus-based filters. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1908–1936.

[61]

Andrews, B. A., Geller, D. K. Analysis of angles-only hybrid space-based/ground-based approach for geosynchronous orbit catalog maintenance. The Journal of the Astronautical Sciences, 2022, 69(2): 473–510.

[62]

Hippelheuser, J., Elgohary, T. A. Inertial space-based orbit estimation: A new measurement model for multiple observers. Acta Astronautica, 2021, 181: 717–732.

[63]
Hippelheuser, J., Elgohary, T. A novel approach for initial orbit determination for space-based observation networks. In: Proceedings of the 3rd IAA Conference on Space Situational Awareness, Madrid, Spain, 2022.
[64]

Tasif, T. H., Hippelheuser, J. E., Elgohary, T. A. Analytic continuation extended Kalman filter framework for perturbed orbit estimation using a network of space-based observers with angles-only measurements. Astrodynamics, 2022, 6(2): 161–187.

[65]

Hu, Y. P., Bai, X. Z., Chen, L., Yan, H. T. A new approach of orbit determination for LEO satellites based on optical tracking of GEO satellites. Aerospace Science and Technology, 2019, 84: 821–829.

[66]
Klein, I., Geller, D. K. Zero ∆v solution to the angles-only range observability problem during orbital proximity operations. In: Proceedings of the Itzhack Y. Bar-Itzhack Memorial Symposium on Estimation, Navigation, and Spacecraft Control, 2015.
[67]

Geller, D. K., Perez, A. Initial relative orbit determination for close-in proximity operations. Journal of Guidance, Control, and Dynamics, 2015, 38(9): 1833–1841.

[68]

Gong, B. C., Geller, D. K., Luo, J. J. Initial relative orbit determination analytical covariance and performance analysis for proximity operations. Journal of Spacecraft and Rockets, 2016, 53(5): 822–835.

[69]

Gong, B. C., Li, W. D., Li, S., Ma, W. H., Zheng, L. L. Angles-only initial relative orbit determination algorithm for non-cooperative spacecraft proximity operations. Astrodynamics, 2018, 2(3): 217–231.

[70]

Gong, B. C., Luo, J. J., Li, S., Li, W. D. Observability criterion of angles-only navigation for spacecraft proximity operations. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(12): 4302–4315.

[71]
Christensen, R., Geller, D. Spin-assisted angles-only navigation and control for SmallSats. In: Proceedings of the 37th Annual AAS Guidance and Control Conference, Breckenridge, USA, 2014.
[72]
You, Y. Study on angles-only relative navigation and maneuver planning in space debris removal. Ph. D. Dissertation. Changsha, China: National University of Defense Technology, 2017. (in Chinese)
[73]
Schmidt, J., Geller, D., Chavez, F. Viability of angles-only navigation for orbital rendezvous operation. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, 2010: AIAA 2010-7755.
[74]

Woffinden, D. C., Geller, D. K. Observability criteria for angles-only navigation. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1194–1208.

[75]

Woffinden, D. C., Geller, D. K. Optimal orbital rendezvous maneuvering for angles-only navigation. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1382–1387.

[76]

Grzymisch, J., Fichter, W. Observability criteria and unobservable maneuvers for in-orbit bearings-only navigation. Journal of Guidance, Control, and Dynamics, 2014, 37(4): 1250–1259.

[77]

Grzymisch, J., Fichter, W. Analytic optimal observability maneuvers for in-orbit bearings-only rendezvous. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1658–1664.

[78]

Grzymisch, J., Fichter, W. Optimal rendezvous guidance with enhanced bearings-only observability. Journal of Guidance, Control, and Dynamics, 2015, 38(6): 1131–1140.

[79]

Grzymisch, J., Fichter, W. Nonlinear pseudo-measurement filtering for in-orbit bearings-only navigation. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2747–2759.

[80]
Pi, J., Bang, H. Trajectory design for satellite relative angles-only navigation. In: Proceedings of the AIP Conference, Vienna, Austria, 2012.
[81]

Pi, J., Bang, H. Trajectory design for improving observability of angles-only relative navigation between two satellites. The Journal of the Astronautical Sciences, 2014, 61(4): 391–412.

[82]

Li, J. R., Li H. Y., Tang, G. J. Analysis of closed-loop control covariance for autonomous orbital rendezvous using angles-only relative navigation. Journal of Astronautics, 2012, 33(6): 705–712. (in Chinese)

[83]

Li, J. R., Li, H. Y., Tang, G. J., Luo, Y. Z. Research on the strategy of angles-only relative navigation for autonomous rendezvous. Science China Technological Sciences, 2011, 54(7): 1865–1872.

[84]
Hebert, L., Sinclair, A. J., Lovell, T. A. Angles-only initial relative-orbit determination via maneuver. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 2015.
[85]
Hebert, L. Angles-only initial relative-orbit determination via successive maneuvers. Ph. D. Dissertation. Auburn, USA: Auburn University, 2016.
[86]

Hou, B., Wang, D. Y., Wang, J. Q., Ge, D. M., Zhou, H. Y., Zhou, X. Y. Optimal maneuvering for autonomous relative navigation using monocular camera sequential images. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 1947–1960.

[87]

Luo, J. J., Gong, B. C., Yuan, J. P., Zhang, Z. F. Angles-only relative navigation and closed-loop guidance for spacecraft proximity operations. Acta Astronautica, 2016, 128: 91–106.

[88]

Franquiz, F. J., Muñoz, J. D., Udrea, B., Balas, M. J. Optimal range observability maneuvers of a spacecraft formation using angles-only navigation. Acta Astronautica, 2018, 153: 337–348.

[89]
Gillis, R. Low-thrust assisted angles-only navigation. Master Thesis. Logan, USA: Utah State University, 2011.
[90]
Jagat, A., Sinclair, A. Control of spacecraft relative motion using angles-only navigation. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2015.
[91]
Jagat, A. Spacecraft relative motion applications to pursuit-evasion games and control using angles-only navigation. Ph. D. Dissertation. Logan, USA: Utah State University, 2015.
[92]

Zhang, Y. Z., Huang, P. F., Song, K. H., Meng, Z. J. An angles-only navigation and control scheme for noncooperative rendezvous operations. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8618–8627.

[93]

Zhang, Y. Z., Huang, P. F., Meng, Z. J., Liu Z. X. Precise angles-only navigation for noncooperative proximity operation with application to tethered space robot. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1139–1150.

[94]
Fujimoto, K., Scheeres, D. J. Short-arc correlation and initial orbit determination for space-based observations. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Hawaii, USA, 2011.
[95]

Fujimoto, K., Scheeres, D. J. Correlation of optical observations of earth-orbiting objects and initial orbit determination. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 208–221.

[96]
Stastny, N., Bettinger, R., Chavez, F. Comparison of the extended and unscented Kalman filters for angles based relative navigation. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Hawaii, USA, 2008: AIAA 2008-7083.
[97]

Liu, C. Q., Jia, Y. H., Xu, S. J. Comparison of four different Kalman filters for relative navigation based on line-of-sight-only measurement. Aerospace Control and Application, 2014, 40(1): 52–57. (in Chinese)

[98]
Ceresoli, M. Bearing-only strategies for proximity navigation on cis-lunar orbits. Master Thesis. Milano, Italy: Politecnico di Milano, 2020.
[99]
Ceresoli, M., Zanotti, G., Lavagna, M. Bearing-only navigation for proximity operations on cis-lunar non-Keplerian orbit. In: Proceedings of the 72nd International Astronautical Congress, Dubai, United Arab Emirates, 2021.
[100]

D'Onofrio, F., Bucchioni, G., Innocenti, M. Bearings-only guidance in cis-lunar rendezvous. Journal of Guidance, Control, and Dynamics, 2021, 44(10): 1862–1874.

[101]
Greaves, J. A., Scheeres, D. J. Relative estimation in the cis-lunar regime using optical sensors. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2021.
[102]

Greaves, J. A., Scheeres, D. J. Observation and maneuver detection for cislunar vehicles using optical measurements and the optimal control based estimator. The Journal of the Astronautical Sciences, 2021, 68: 826–854.

[103]

Hu, R. H., Huang, X. Y., Xu, C. Integrated visual navigation based on angles-only measurements for asteroid final landing phase. Astrodynamics, 2023, 7(1): 69–82.

[104]
Sanchez, H., Mcintosh, D., Cannon, H., Pires, C., Sullivan, J., D'Amico, S., O'Connor, B. Starling1: Swarm technology demonstration. In: Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Utah, USA, 2018.
[105]
Reintsema, D., Sommer, B., Wolf, T., Theater, J., Radthke, A., Sommer, J. Naumann, W., Rank, P. DEOS-the in-flight technology demonstration of German's robotics approach to dispose malfunctioned satellites. In: Proceedings of the ESA 11th Symposium on Advanced Space Technologies in Robotics and Automation, the Netherlands, 2011.
[106]
D'Amico, S., Ardaens, J., Gaias, G., Schlepp, B., Frei, H., Tzschichholz, T., Karlsson, T., Jørgensen, J. L. . Flight demonstration of non-cooperative rendezvous using optical navigation. In: Proceedings of the 23rd International Symposium on Space Flight Dynamics, Pasadena, USA, 2012.
[107]
Delpech, M., Bergès, J. C., Djalal, S., Christy, J. Vision based rendezvous experiment performed during the PRISMA extended mission. In: Proceedings of the 23rd International Symposium on Space Flight Dynamics, Pasadena, USA, 2012.
[108]

D'Amico, S., Ardaens, J. S., Gaias, G., Benninghoff, H., Schlepp, B., Jørgensen, J. L. Noncooperative rendezvous using angles-only optical navigation: System design and flight results. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1576–1595.

[109]
Gaias, G., Ardaens, J., D'Amico, S. The autonomous vision approach navigation and target identification (AVANTI) experiment: Objectives and design. In: Proceedings of the 9th International ESA Conference on Guidance, Navigation & Control Systems, Porto, Portugal, 2014.
[110]

Gaias, G., Ardaens, J. Flight demonstration of autonomous noncooperative rendezvous in low earth orbit. Journal of Guidance, Control, and Dynamics, 2017, 41(6): 1337–1354.

[111]
Ardaens, J. H. Angles-only relative navigation in low earth orbit. Ph. D. Dissertation. Delft, the Netherlands: Delft University of Technology, 2020.
[112]

Ardaens, J., Gaias, G. Angles-only relative orbit determination in low earth orbit. Advances in Space Research, 2018, 61(11): 2740–2760.

[113]
Gaias, G., D'Amico, S., Ardaens, J. Angles-only navigation to a non-cooperative satellite using relative orbital elements. In: Proceedings of the AIAA/AAS Astrodynamics Specialists Conference, Minneapolis, USA, 2012: AIAA 2012-4885.
[114]

Gaias, G., Ardaens, J. In-orbit experience and lessons learned from the AVANTI experiment. Acta Astronautica, 2018, 153: 383–393.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2022
Accepted: 29 August 2022
Published: 23 November 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was partially supported by the National Natural Science Foundation of China (12272168, 11802119) and Foundation of Science and Technology on Space Intelligent Control Laboratory (6142208200303, 2021-JCJQ-LB-010-04).

Return