Journal Home > Volume 5 , Issue 4

Small bodies are among the best tracers of our Solar System's history. A large number of space missions to small bodies (past and future) offer a unique opportunity to use these bodies as a natural laboratory to study the different processes, mechanical structures, and responses that drive the origin and evolution of small bodies, which are connected to the origin, evolution, and current architecture of the Solar System. Images of small bodies sent by spacecraft have revealed unexpectedly rich and complex geological worlds. In addition to very diverse compositions, small bodies in the Solar System have highly diverse shapes and structures, which reflect both different evolutionary paths and material properties. Furthermore, each individual body has diverse geological features on its surface, which include craters of various sizes and depths, boulders of different sizes and morphologies, lineaments, fractures, pits, signatures of landslides, terraces, and ridges. Such a geological richness could not be detected via ground-based observations, and we are still at the beginning of understanding their significance on the low-gravity surfaces on which they manifest. The combination of space mission data and numerical modeling allows us to enrich our understanding of the origin, evolution, and physical properties of these fascinating bodies. For instance, starting from the shape models, bulk densities, and spin rates determined from space mission data, we can investigate the formation mechanisms that lead to the observed properties of small bodies. We can also infer the interior and mechanical properties (e.g., friction and cohesion) that allow a small body to be structurally stable, as well as its further potential evolution under processes such as a spin rate increase or an impact. Then, considering the various processes that these bodies experience during their evolution, we can investigate how these processes modify their properties and, in turn, how those properties influence the outcome of these processes. This paper reviews our current knowledge of small-body shapes and structures and discusses the various processes that are responsible for their formation and evolution, which can modify the characteristics of the bodies. We separately consider each population of small bodies, although in some cases, such as active asteroids and comets, the distinction between two populations solely in terms of physical properties is not clear. We then summarize the main findings regarding the physical properties of small bodies that have been the target of rendezvous or sample return missions.


menu
Abstract
Full text
Outline
About this article

Shapes, structures, and evolution of small bodies

Show Author's information Yun Zhang1,2Patrick Michel1
Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, 06304, France
Department of Aerospace Engineering, University of Maryland, College Park, MD, 20742, USA

Abstract

Small bodies are among the best tracers of our Solar System's history. A large number of space missions to small bodies (past and future) offer a unique opportunity to use these bodies as a natural laboratory to study the different processes, mechanical structures, and responses that drive the origin and evolution of small bodies, which are connected to the origin, evolution, and current architecture of the Solar System. Images of small bodies sent by spacecraft have revealed unexpectedly rich and complex geological worlds. In addition to very diverse compositions, small bodies in the Solar System have highly diverse shapes and structures, which reflect both different evolutionary paths and material properties. Furthermore, each individual body has diverse geological features on its surface, which include craters of various sizes and depths, boulders of different sizes and morphologies, lineaments, fractures, pits, signatures of landslides, terraces, and ridges. Such a geological richness could not be detected via ground-based observations, and we are still at the beginning of understanding their significance on the low-gravity surfaces on which they manifest. The combination of space mission data and numerical modeling allows us to enrich our understanding of the origin, evolution, and physical properties of these fascinating bodies. For instance, starting from the shape models, bulk densities, and spin rates determined from space mission data, we can investigate the formation mechanisms that lead to the observed properties of small bodies. We can also infer the interior and mechanical properties (e.g., friction and cohesion) that allow a small body to be structurally stable, as well as its further potential evolution under processes such as a spin rate increase or an impact. Then, considering the various processes that these bodies experience during their evolution, we can investigate how these processes modify their properties and, in turn, how those properties influence the outcome of these processes. This paper reviews our current knowledge of small-body shapes and structures and discusses the various processes that are responsible for their formation and evolution, which can modify the characteristics of the bodies. We separately consider each population of small bodies, although in some cases, such as active asteroids and comets, the distinction between two populations solely in terms of physical properties is not clear. We then summarize the main findings regarding the physical properties of small bodies that have been the target of rendezvous or sample return missions.

Keywords: small bodies, internal structure, collisional evolution, thermal evolution, rotational evolution, tidal encounter

References(277)

1
Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., Rickman, H. The multifaceted planetesimal formation process. In: Protostars and Planets VI. Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, T. Eds. University of Arizona Press, 2014: 547.https://doi.org/10.2458/azu_uapress_9780816531240-ch024
DOI
2

Nesvorný, D., Li, R. X., Youdin, A. N., Simon, J. B., Grundy, W. M. Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 2019, 3(9): 808-812.

3

Morbidelli, A., Lunine, J. I., O'Brien, D. P., Raymond, S. N., Walsh, K. J. Building terrestrial planets. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 251-275.

4

Morbidelli, A., Levison, H. F., Bottke, W. F., Dones, L., Nesvorný, D. Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans. Icarus, 2009, 202(1): 310-315.

5

Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature, 2005, 435(7041): 459-461.

6

Minton, D. A., Malhotra, R. A record of planet migration in the main asteroid belt. Nature, 2009, 457(7233): 1109-1111.

7

Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P., Mandell, A. M. A low mass for Mars from Jupiter's early gas-driven migration. Nature, 2011, 475(7355): 206-209.

8

Batygin, K., Brown, M. E. Evidence for a distant giant planet in the solar system. The Astronomical Journal, 2016, 151(2): 22.

9

Pirani, S., Johansen, A., Bitsch, B., Mustill, A. J., Turrini, D. Consequences of planetary migration on the minor bodies of the early Solar System. Astronomy & Astrophysics, 2019, 623: A169.

10

Michel, P., Kueppers, M., Sierks, H., Carnelli, I., Cheng, A. F., Mellab, K., Granvik, M., Kestilä, A., Kohout, T., Muinonen, K., et al. European component of the AIDA mission to a binary asteroid: Characterization and interpretation of the impact of the DART mission. Advances in Space Research, 2018, 62(8): 2261-2272.

11

Raducan, S. D., Davison, T. M., Collins, G. S. The effects of asteroid layering on ejecta mass-velocity distribution and implications for impact momentum transfer. Planetary and Space Science, 2020, 180: 104756.

12

Brownlee, D. E., Horz, F., Newburn, R. L., Zolensky, M., Duxbury, T. C., Sandford, S., Sekanina, Z., Tsou, P., Hanner, M. S., Clark, B. C., et al. Surface of young Jupiter family comet 81P/Wild 2: View from the Stardust Spacecraft. Science, 2004, 304(5678): 1764-1769.

13

Fujiwara, A., Kawaguchi, J., Yeomans, D. K., Abe, M., Mukai, T., Okada, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D. J., et al. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 2006, 312(5778): 1330-1334.

14

Watanabe, S., Hirabayashi, M., Hirata, N., Hirata, N., Noguchi, R., Shimaki, Y., Ikeda, H., Tatsumi, E., Yoshikawa, M., Kikuchi, S., et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science, 2019, 364(6437): 268-272.

15

Welsh, B. Y., Montgomery, S. L. The appearance and disappearance of exocomet gas absorption. Advances in Astronomy, 2015, 2015: 980323.

16

Rappaport, S., Vanderburg, A., Jacobs, T., LaCourse, D., Jenkins, J., Kraus, A., Rizzuto, A., Latham, D. W., Bieryla, A., Lazarevic, M., et al. Likely transiting exocomets detected by Kepler. Monthly Notices of the Royal Astronomical Society, 2018, 474(2): 1453-1468.

17

Vanderburg, A., Johnson, J. A., Rappaport, S., Bieryla, A., Irwin, J., Lewis, J. A., Kipping, D., Brown, W. R., Dufour, P., Ciardi, D. R., et al. A disintegrating minor planet transiting a white dwarf. Nature, 2015, 526(7574): 546-549.

18

Xu, S., Rappaport, S., van Lieshout, R., Vanderburg, A., Gary, B., Hallakoun, N., Ivanov, V. D., Wyatt, M. C., DeVore, J., Bayliss, D., et al. A dearth of small particles in the transiting material around the white dwarf WD 1145+017. Monthly Notices of the Royal Astronomical Society, 2018, 474(4): 4795-4809.

19

Manser, C. J., Gänsicke, B. T., Eggl, S., Hollands, M., Izquierdo, P., Koester, D., Landstreet, J. D., Lyra, W., Marsh, T. R., Meru, F., et al. A planetesimal orbiting within the debris disc around a white dwarf star. Science, 2019, 364(6435): 66-69.

20

Vanderbosch, Z., Hermes, J. J., Dennihy, E., Dunlap, B. H., Izquierdo, P., Tremblay, P. E., Cho, P. B., Gänsicke, B. T., Toloza, O., Bell, K. J., et al. A white dwarf with transiting circumstellar material far outside the Roche limit. The Astrophysical Journal Letters, 2020, 897(2): 171.

21

Meech, K. J., Weryk, R., Micheli, M., Kleyna, J. T., Hainaut, O. R., Jedicke, R., Wainscoat, R. J., Chambers, K. C., Keane, J. V., Petric, A., et al. A brief visit from a red and extremely elongated interstellar asteroid. Nature, 2017, 552(7685): 378-381.

22

Guzik, P., Drahus, M., Rusek, K., Waniak, W., Cannizzaro, G., Pastor-Marazuela, I. Initial characterization of interstellar comet 2I/Borisov. Nature Astronomy, 2020, 4(1): 53-57.

23

Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Bouchez, A. H., Campbell, R. D., Chin, J. C. Y., Dam, M. A. V., Hartman, S. K., Johansson, E. M., et al. A low density of 0.8 g·cm-3 for the Trojan binary asteroid 617 Patroclus. Nature, 2006, 439(7076): 565-567.

24

Schambeau, C. A., Fernández, Y. R., Lisse, C. M., Samarasinha, N., Woodney, L. M. A new analysis of Spitzer observations of comet 29P/Schwassmann-Wachmann 1. Icarus, 2015, 260: 60-72.

25

Kareta, T., Sharkey, B., Noonan, J., Volk, K., Reddy, V., Harris, W., Miles, R. Physical characterization of the 2017 December outburst of the Centaur 174P/Echeclus. The Astronomical Journal, 2019, 158(6): 255.

26

Noll, K. S., Brown, M. E., Weaver, H. A., Grundy, W. M., Porter, S. B., Buie, M. W., Levison, H. F., Olkin, C., Spencer, J. R., Marchi, S., et al. Detection of a satellite of the Trojan asteroid (3548) Eurybates—A lucy mission target. The Planetary Science Journal, 2020, 1(2): 44.

27
Jewitt, D., Hsieh, H., Agarwal, J. The active asteroids. In: Asteroids IV. University of Arizona Press, 2015: 221-241.https://doi.org/10.2458/azu_uapress_9780816532131-ch012
DOI
28

Krasinsky, G. A., Pitjeva, E. V., Vasilyev, M. V., Yagudina, E. I. Hidden mass in the asteroid belt. Icarus, 2002, 158(1): 98-105.

29

Somenzi, L., Fienga, A., Laskar, J., Kuchynka, P. Determination of asteroid masses from their close encounters with Mars. Planetary and Space Science, 2010, 58(5): 858-863.

30

Weidenschilling, S. J. The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science, 1977, 51(1): 153-158.

31
Morbidelli, A., Walsh, K. J., O'Brien, D. P., Minton, D. A., Bottke, W. F. The dynamical evolution of the asteroid belt. In: Asteroids IV. University of Arizona Press, 2015: 493-507.https://doi.org/10.2458/azu_uapress_9780816532131-ch026
DOI
32
Raymond, S. N., Nesvorny, D. Origin and dynamical evolution of the asteroid belt. arXiv preprints, 2020, arXiv: 2012.07932.
33

DeMeo, F. E., Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature, 2014, 505(7485): 629-634.

34
DeMeo, F. E., Alexander, C. M. O., Walsh, K. J., Chapman, C. R., Binzel, R. P. The compositional structure of the asteroid belt. In: Asteroids IV. University of Arizona Press, 2015: 13-41.https://doi.org/10.2458/azu_uapress_9780816532131-ch002
DOI
35

Rivkin, A. S., Emery, J. P. Detection of ice and organics on an asteroidal surface. Nature, 2010, 464(7293): 1322-1323.

36

Campins, H., Hargrove, K., Pinilla-Alonso, N., Howell, E. S., Kelley, M. S., Licandro, J., Mothé-Diniz, T., Fernández, Y., Ziffer, J. Water ice and organics on the surface of the asteroid 24 Themis. Nature, 2010, 464(7293): 1320-1321.

37

Prettyman, T. H., Yamashita, N., Toplis, M. J., McSween, H. Y., Schörghofer, N., Marchi, S., Feldman, W. C., Castillo-Rogez, J., Forni, O., Lawrence, D. J., et al. Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355(6320): 55-59.

38

Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., Marchi, S., Johnson, B. C., Hesse, M. A., Scully, J. E. C., Buczkowski, D. L., Sizemore, H. G., Schenk, P. M., et al. Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 2020, 4(8): 741-747.

39

Hsieh, H. H., Jewitt, D. A population of comets in the main asteroid belt. Science, 2006, 312(5773): 561-563.

40

Hsieh, H. H., Denneau, L., Wainscoat, R. J., Schörghofer, N., Bolin, B., Fitzsimmons, A., Jedicke, R., Kleyna, J., Micheli, M., Vereš, P., et al. The main-belt comets: The Pan-STARRS1 perspective. Icarus, 2015, 248: 289-312.

41

Haghighipour, N. Dynamical constraints on the origin of main belt comets. Meteoritics & Planetary Science, 2009, 44(12): 1863-1869.

42

Prialnik, D., Rosenberg, E. D. Can ice survive in main-belt comets? Long-term evolution models of comet 133P/Elst-Pizarro. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 399(1): L79-L83.

43

DeMeo, F., Binzel, R. P. Comets in the near-Earth object population. Icarus, 2008, 194(2): 436-449.

44

Gladman, B. J., Migliorini, F., Morbidelli, A., Zappalá, V., Michel, P., Cellino, A., Froeschlé, C., Levison, H. F., Bailey, M., Duncan, M. Dynamical lifetimes of objects injected into asteroid belt resonances. Science, 1997, 277(5323): 197-201.

45

Bottke, W. Debiased orbital and absolute magnitude distribution of the near-earth objects. Icarus, 2002, 156(2): 399-433.

46

Huang, Y., Gladman, B. Four-billion year stability of the Earth-Mars belt. Monthly Notices of the Royal Astronomical Society, 2020, 500(1): 1151-1157.

47

Terada, K., Morota, T., Kato, M. Asteroid shower on the Earth-Moon system immediately before the Cryogenian period revealed by KAGUYA. Nature Communications, 2020, 11: 3453.

48
Williams, J. G. Secular perturbations in the solar system. Ph. D. Thesis. University of California, Los Angeles, 1969.
49

Wetherill, G. W. Steady state populations of Apollo-Amor objects. Icarus, 1979, 37(1): 96-112.

50

Wisdom, J. Chaotic behavior and the origin of the 31 Kirkwood gap. Icarus, 1983, 56(1): 51-74.

51

Henrard, J., Morbidelli, A. Slow crossing of a stochastic layer. Physica D: Nonlinear Phenomena, 1993, 68(2): 187-200.

52

Moons, M. Review of the dynamics in the Kirkwood gaps. Celestial Mechanics and Dynamical Astronomy, 1996, 65(1-2): 175-204.

53

Michel, P., Farinella, P., Froeschlé, C. The orbital evolution of the asteroid Eros and implications for collision with the Earth. Nature, 1996, 380(6576): 689-691.

54

Michel, P., Froeschlé, C. The location of linear secular resonances for semimajor axes smaller than 2 AU. Icarus, 1997, 128(1): 230-240.

55

Michel, P. Overlapping of secular resonances in a Venus horseshoe orbit. Astronomy and Astrophysics, 1997, 328: L5-L8.

56

Gladman, B., Michel, P., Froeschlé, C. The near-Earth object population. Icarus, 2000, 146(1): 176-189.

57

Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W. F., Beshore, E., Vokrouhlický, D., Nesvorný, D., Michel, P. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus, 2018, 312: 181-207.

58

Morbidelli, A., Gladman, B. Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteoritics & Planetary Science, 1998, 33(5): 999-1016.

59

Farinella, P., Vokrouhlický, D. Semimajor axis mobility of asteroidal fragments. Science, 1999, 283(5407): 1507-1510.

60

Nesvorný, D., Vokrouhlický, D., Bottke, W. F., Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus-Menoetius binary Jupiter Trojan. Nature Astronomy, 2018, 2(11): 878-882.

61

Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A., Batygin, K. The absolute magnitude distribution of Kuiper belt objects. The Astrophysical Journal Letters, 2014, 782(2): 100.

62

Wong, I., Brown, M. E. A hypothesis for the color bimodality of Jupiter trojans. The Astronomical Journal, 2016, 152(4): 90.

63

Jewitt, D. The Trojan color conundrum. The Astronomical Journal, 2018, 155(2): 56.

64

Levison, H. F., Olkin, C. B., Noll, K. S., Marchi, S., Bell, J. F., Bierhaus, E., Binzel, R., Bottke, W., Britt, D., Brown, M., et al. Lucy mission to the Trojan asteroids: Science goals. The Planetary Science Journal, 2021, 2(5): 171.

65

Kresák, L. On the dividing line between cometary and asteroidal orbits. Symposium - International Astronomical Union, 1972, 45: 503-514.

66

Carusi, A., Kresák, L'., Valsecchi, G. B. Conservation of the Tisserand parameter at close encounters of interplanetary objects with Jupiter. Earth, Moon, and Planets, 1995, 68(1-3): 71-94.

67

Levison, H. F., Duncan, M. J. From the Kuiper belt to Jupiter-family comets: The spatial distribution of ecliptic comets. Icarus, 1997, 127(1): 13-32.

68

Levison, H. F., Dones, L., Duncan, M. J. The origin of Halley-type comets: Probing the inner Oort cloud. The Astronomical Journal, 2001, 121(4): 2253-2267.

69

Nesvorný, D., Vokrouhlický, D., Dones, L., Levison, H. F., Kaib, N., Morbidelli, A. Origin and evolution of short-period comets. The Astrophysical Journal Letters, 2017, 845(1): 27.

70

Bailey, M. E., Emel'Yanenko, V. V. Dynamical evolution of Halley-type comets. Monthly Notices of the Royal Astronomical Society, 1996, 278(4): 1087-1110.

71

Levison, H. F., Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus, 1994, 108(1): 18-36.

72

Everhart, E. Close encounters of comets and planets. The Astronomical Journal, 1969, 74: 735.

73

Kary, D. M., Dones, L. Capture statistics of short-period comets: Implications for comet D/Shoemaker-Levy 9. Icarus, 1996, 121(2): 207-224.

74
Duncan, M., Levison, H., Dones, L. Dynamical evolution of ecliptic comets. In: Comets Ⅱ. University of Arizona Press, 2004: 193-204.https://doi.org/10.2307/j.ctv1v7zdq5.19
DOI
75

Edgeworth, K. E. The evolution of our planetary system. Journal of the British Astronomical Association, 1943, 53: 181-188.

76

Kuiper, G. P. On the Origin of the Solar System. New York: McGraw Hill, 1951: 357-424.

77

Jewitt, D., Luu, J. Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 1993, 362(6422): 730-732.

78
Gladman, B., Marsden, B. G., Vanlaerhoven, C. Nomenclature in the outer solar system. In: The Solar System Beyond Neptune. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., Morbidelli, A. Eds. University of Arizona Press, 2008: 43-57.
79

Di Sisto, R. P., Brunini, A. The origin and distribution of the Centaur population. Icarus, 2007, 190(1): 224-235.

80

Tiscareno, M. S., Malhotra, R. The dynamics of known Centaurs. The Astronomical Journal, 2003, 126(6): 3122-3131.

81

Gomes, R. S., Gallardo, T., Fernández, J. A., Brunini, A. On the origin of the high-perihelion scattered disk: The role of the Kozai mechanism and mean motion resonances. Celestial Mechanics and Dynamical Astronomy, 2005, 91(1-2): 109-129.

82

Fernández, J. A., Gallardo, T., Brunini, A. The scattered disk population as a source of Oort cloud comets: Evaluation of its current and past role in populating the Oort cloud. Icarus, 2004, 172(2): 372-381.

83

Batygin, K., Brown, M. E., Fraser, W. C. Retention of a primordial cold classical Kuiper belt in an instability-driven model of solar system formation. The Astrophysical Journal Letters, 2011, 738(1): 13.

84

McKinnon, W. B., Richardson, D. C., Marohnic, J. C., Keane, J. T., Grundy, W. M., Hamilton, D. P., Nesvorný, D., Umurhan, O. M., Lauer, T. R., Singer, K. N., et al. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science, 2020, 367(6481): aay6620.

85

Tegler, S. C., Romanishin, W. Resolution of the kuiper belt object color controversy: Two distinct color populations. Icarus, 2003, 161(1): 181-191.

86

Petit, J. M., Kavelaars, J. J., Gladman, B. J., Jones, R. L., Parker, J. W., van Laerhoven, C., Nicholson, P., Mars, G., Rousselot, P., Mousis, O., et al. The Canada-France ecliptic plane survey—Full data release: The orbital structure of the kuiper belt. The Astronomical Journal, 2011, 142(4): 131.

87
Morbidelli, A., Nesvorný, D. Kuiper belt: Formation and evolution. In: The Trans-Neptunian Solar System. Amsterdam: Elsevier, 2020: 25-59.https://doi.org/10.1016/B978-0-12-816490-7.00002-3
DOI
88

Oort, J. H. The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin. Bulletin of the Astronomical Institutes of the Netherlands, 1950, 11: 91-110.

89

Kaib, N. A., Quinn, T. Reassessing the source of long-period comets. Science, 2009, 325(5945): 1234-1236.

90
Dones, L., Weissman, P. R., Levison, H. F., Duncan, M. J. Oort cloud formation and dynamics. In: Comets Ⅱ. University of Arizona Press, 2004: 153-174.https://doi.org/10.2307/j.ctv1v7zdq5.17
DOI
91

Meech, K. J., Hainaut, O. R., Marsden, B. G. Comet nucleus size distributions from HST and Keck telescopes. Icarus, 2004, 170(2): 463-491.

92

Brasser, R., Duncan, M. J., Levison, H. F. Embedded star clusters and the formation of the Oort cloud: Ⅱ. The effect of the primordial solar nebula. Icarus, 2007, 191(2): 413-433.

93

Brasser, R., Morbidelli, A. Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System. Icarus, 2013, 225(1): 40-49.

94

Fernández, J. A., Brunini, A. The buildup of a tightly bound comet cloud around an early Sun immersed in a dense galactic environment: Numerical experiments. Icarus, 2000, 145(2): 580-590.

95

Brasser, R., Duncan, M. J., Levison, H. F., Schwamb, M. E., Brown, M. E. Reassessing the formation of the inner Oort cloud in an embedded star cluster. Icarus, 2012, 217(1): 1-19.

96

Bottke, W. F., Vokrouhlický, D., Ballouz, R. L., Barnouin, O. S., Connolly, H. C. Jr., Elder, C., Marchi, S., McCoy, T. J., Michel, P., Nolan, M. C., et al. Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. The Astronomical Journal, 2020, 160(1): 14.

97

Hendler, N. P., Malhotra, R. Observational completion limit of minor planets from the asteroid belt to Jupiter trojans. The Planetary Science Journal, 2020, 1(3): 75.

98

Bottke, W. F. Jr., Durda, D. D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. The fossilized size distribution of the main asteroid belt. Icarus, 2005, 175(1): 111-140.

99

Chambers, J. E. Planetary accretion in the inner Solar System. Earth and Planetary Science Letters, 2004, 223(3-4): 241-252.

100

Morbidelli, A., Bottke, W. F., Nesvorný, D., Levison, H. F. Asteroids were born big. Icarus, 2009, 204(2): 558-573.

101

Dermott, S. F., Christou, A. A., Li, D., Kehoe, T. J. J., Robinson, J. M. The common origin of family and non-family asteroids. Nature Astronomy, 2018, 2(7): 549-554.

102

Johansen, A., Oishi, J. S., Low, M. M. M., Klahr, H., Henning, T., Youdin, A. Rapid planetesimal formation in turbulent circumstellar disks. Nature, 2007, 448(7157): 1022-1025.

103

Cuzzi, J. N., Hogan, R. C., Shariff, K. Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysical Journal Letters, 2008, 687(2): 1432-1447.

104

Lyra, W., Johansen, A., Klahr, H., Piskunov, N. Embryos grown in the dead zone. Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. Astronomy & Astrophysics, 2008, 491(3): L41-L44.

105

Johansen, A., Youdin, A., Mac Low, M. M. Particle clumping and planetesimal formation depend strongly on metallicity. The Astrophysical Journal Letters, 2009, 704(2): L75-L79.

106

Bai, X. N., Stone, J. M. Dynamics of solids in the midplane of protoplanetary disks: Implications for planetesimal formation. The Astrophysical Journal Letters, 2010, 722(2): 1437-1459.

107

Greenwood, R. C., Burbine, T. H., Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochimica et Cosmochimica Acta, 2020, 277: 377-406.

108

Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., De Sanctis, M. C., Jaumann, R., Konopliv, A. S., Preusker, F., et al. Dawn at Vesta: Testing the protoplanetary paradigm. Science, 2012, 336(6082): 684-686.

109

Park, R. S., Konopliv, A. S., Bills, B. G., Rambaux, N., Castillo-Rogez, J. C., Raymond, C. A., Vaughan, A. T., Ermakov, A. I., Zuber, M. T., Fu, R. R., et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 2016, 537(7621): 515-517.

110

Rivkin, A. S., Howell, E. S., Lebofsky, L. A., Clark, B. E., Britt, D. T. The nature of M-class asteroids from 3-μm observations. Icarus, 2000, 145(2): 351-368.

111

Urey, H. C. The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proceedings of the National Academy of Sciences of the United States of America, 1955, 41(3): 127-144.

112

Merk, R., Breuer, D., Spohn, T. Numerical modeling of 26Al-induced radioactive melting of asteroids considering accretion. Icarus, 2002, 159(1): 183-191.

113

Hevey, P. J., Sanders, I. S. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 2006, 41(1): 95-106.

114

Elkins-Tanton, L. T., Asphaug, E., Bell Ⅲ, J. F., Bercovici, H., Bills, B., Binzel, R., Bottke, W. F., Dibb, S., Lawrence, D. J., Marchi, S., et al. Observations, meteorites, and models: A preflight assessment of the composition and formation of (16) psyche. Journal of Geophysical Research: Planets, 2020, 125(3): e2019JE006296.

115

Marchis, F., Jorda, L., Vernazza, P., Brož, M., Hanuš, J., Ferrais, M., Vachier, F., Rambaux, N., Marsset, M., Viikinkoski, M., et al. (216) Kleopatra, a low density critically rotating M-type asteroid. Astronomy & Astrophysics, 2021, 653: A57.

116

Libourel, G., Nakamura, A. M., Beck, P., Potin, S., Ganino, C., Jacomet, S., Ogawa, R., Hasegawa, S., Michel, P. Hypervelocity impacts as a source of deceiving surface signatures on iron-rich asteroids. Science Advances, 2019, 5(8): eaav3971.

117
Johansen, A., Jacquet, E., Cuzzi, J. N., Morbidelli, A., Gounelle, M. New paradigms for asteroid formation. In: Asteroids IV. University of Arizona Press, 2015: 471-492https://doi.org/10.2458/azu_uapress_9780816532131-ch025
DOI
118

Elkins-Tanton, L. T., Weiss, B. P., Zuber, M. T. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 2011, 305(1-2): 1-10.

119

Carry, B., Vachier, F., Berthier, J., Marsset, M., Vernazza, P., Grice, J., Merline, W. J., Lagadec, E., Fienga, A., Conrad, A., et al. Homogeneous internal structure of CM-like asteroid (41) Daphne. Astronomy & Astrophysics, 2019, 623: A132.

120

Schwamb, M. E., Brown, M. E., Fraser, W. C. The small numbers of large Kuiper belt objects. The Astronomical Journal, 2013, 147(1): 2.

121

Nesvorný, D., Vokrouhlický, D. Neptune's orbital migration was grainy, not smooth. The Astrophysical Journal Letters, 2016, 825(2): 94.

122

Brown, M. E. The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. The Astrophysical Journal Letters, 2013, 778(2): L34.

123

Pätzold, M., Andert, T., Hahn, M., Asmar, S. W., Barriot, J. P., Bird, M. K., Häusler, B., Peter, K., Tellmann, S., Grün, E., et al. A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field. Nature, 2016, 530(7588): 63-65.

124

Ragozzine, D., Brown, M. E. Orbits and masses of the satellites of the dwarf planet Haumea (2003 El61). The Astronomical Journal, 2009, 137(6): 4766-4776.

125

Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McKinnon, W. B., Moore, J. M., Olkin, C. B., Spencer, J. R., Weaver, H. A., et al. The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350(6258): aad1815.

126
Guilbert-Lepoutre, A., Prialnik, D., Métayer, R. Internal structure and cryovolcanism on Trans-Neptunian objects. In: The Trans-Neptunian Solar System. Amsterdam: Elsevier, 2020: 183-201.https://doi.org/10.1016/B978-0-12-816490-7.00008-4
DOI
127

Carry, B., Vernazza, P., Vachier, F., Neveu, M., Berthier, J., Hanuš, J., Ferrais, M., Jorda, L., Marsset, M., Viikinkoski, M., Bartczak, P., et al. Evidence for differentiation of the most primitive small bodies. Astronomy & Astrophysics, 2021, 650: A129.

128

Snodgrass, C., Jones, G. H. The European space agency's comet interceptor lies in wait. Nature Communications, 2019, 10: 5418.

129

Davidsson, B. J. R., Sierks, H., Güttler, C., Marzari, F., Pajola, M., Rickman, H., A'Hearn, M. F., Auger, A. T., El-Maarry, M. R., Fornasier, S., et al. The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy & Astrophysics, 2016, 592: A63.

130

Morbidelli, A., Rickman, H. Comets as collisional fragments of a primordial planetesimal disk. Astronomy & Astrophysics, 2015, 583: A43.

131

Jutzi, M., Benz, W., Toliou, A., Morbidelli, A., Brasser, R. How primordial is the structure of comet 67P? Astronomy & Astrophysics, 2017, 597: A61.

132

Schwartz, S. R., Michel, P., Jutzi, M., Marchi, S., Zhang, Y., Richardson, D. C. Catastrophic disruptions as the origin of bilobate comets. Nature Astronomy, 2018, 2(5): 379-382.

133

Mommert, M., McNeill, A., Trilling, D. E., Moskovitz, N., Delbo, M. The main belt asteroid shape distribution from Gaia data release 2. The Astronomical Journal, 2018, 156(3): 139.

134

Holsapple, K. A., Housen, K. R. The catastrophic disruptions of asteroids: History, features, new constraints and interpretations. Planetary and Space Science, 2019, 179: 104724.

135

Hirayama, K. Groups of asteroids probably of common origin. The Astronomical Journal, 1918, 31: 185.

136
Masiero, J. R., DeMeo, F. E., Kasuga, T., Parker, A. H. Asteroid family physical properties. In: Asteroids IV. University of Arizona Press, 2015: 323-340.https://doi.org/10.2458/azu_uapress_9780816532131-ch017
DOI
137
Bottke, W. F. Jr., Vokrouhlický, D., Broz, M., Nesvorný, D., Morbidelli, A. Dynamical spreading of asteroid families by the Yarkovsky effect. Science, 2001, 294(5547): 1693-1696.https://doi.org/10.1126/science.1066760
DOI
138

Michel, P., Benz, W., Tanga, P., Richardson, D. C. Collisions and gravitational reaccumulation: Forming asteroid families and satellites. Science, 2001, 294(5547): 1696-1700.

139

Benz, W., Asphaug, E. Catastrophic disruptions revisited. Icarus, 1999, 142(1): 5-20.

140
Michel, P., Richardson, D. C., Durda, D. D., Jutzi, M., Asphaug, E. Collisional formation and modeling of asteroid families. In: Asteroids IV. University of Arizona Press, 2015: 341-354.https://doi.org/10.2458/azu_uapress_9780816532131-ch018
DOI
141

Richardson, D. C., Michel, P., Walsh, K. J., Flynn, K. W. Numerical simulations of asteroids modelled as gravitational aggregates with cohesion. Planetary and Space Science, 2009, 57(2): 183-192.

142

Richardson, D. C., Quinn, T., Stadel, J., Lake, G. Direct large-scale N-body simulations of planetesimal dynamics. Icarus, 2000, 143(1): 45-59.

143
Stadel, J. G. Cosmological N-body simulations and their analysis. Ph. D. Thesis. University of Washington Washington, DC, 2001.
144

Michel, P., Richardson, D. C. Collision and gravitational reaccumulation: Possible formation mechanism of the asteroid Itokawa. Astronomy & Astrophysics, 2013, 554: L1.

145

Schwartz, S. R., Richardson, D. C., Michel, P. An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granular Matter, 2012, 14(3): 363-380.

146

Zhang, Y., Richardson, D. C., Barnouin, O. S., Maurel, C., Michel, P., Schwartz, S. R., Ballouz, R. L., Benner, L. A. M., Naidu, S. P., Li, J. F. Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model. Icarus, 2017, 294: 98-123.

147

Jutzi, M., Michel, P. Collisional heating and compaction of small bodies: Constraints for their origin and evolution. Icarus, 2020, 350: 113867.

148

Michel, P., Ballouz, R. L., Barnouin, O. S., Jutzi, M., Walsh, K. J., May, B. H., Manzoni, C., Richardson, D. C., Schwartz, S. R., Sugita, S., et al. Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu. Nature Communications, 2020, 11: 2655.

149

Housen, K. R., Holsapple, K. A. Scale effects in strength-dominated collisions of rocky asteroids. Icarus, 1999, 142(1): 21-33.

150

Dombard, A. J., Barnouin, O. S., Prockter, L. M., Thomas, P. C. Boulders and ponds on the asteroid 433 Eros. Icarus, 2010, 210(2): 713-721.

151

Delbo, M., Libourel, G., Wilkerson, J., Murdoch, N., Michel, P., Ramesh, K. T., Ganino, C., Verati, C., Marchi, S. Thermal fatigue as the origin of regolith on small asteroids. Nature, 2014, 508(7495): 233-236.

152

Uribe-Suárez, D., Delbo, M., Bouchard, P. O., Pino-Muñoz, D. Diurnal temperature variation as the source of the preferential direction of fractures on asteroids: Theoretical model for the case of Bennu. Icarus, 2021, 360: 114347.

153
Sasaki, S., Honda, C., Sugita, S., Miyammoto, H., Michikami, T., Morota, T., Kanda, S., Kikuchi, H. Crack orientations of boulders and thermal fatigue on (162173) Ryugu. In: Proceedings of the 43rd COSPAR Scientific Assembly, 2021: 270.
154

Libourel, G., Ganino, C., Delbo, M., Niezgoda, M., Remy, B., Aranda, L., Michel, P. Network of thermal cracks in meteorites due to temperature variations: New experimental evidence and implications for asteroid surfaces. Monthly Notices of the Royal Astronomical Society, 2021, 500(2): 1905-1920.

155

Lauretta, D. S., Hergenrother, C. W., Chesley, S. R., Leonard, J. M., Pelgrift, J. Y., Adam, C. D., Al Asad, M., Antreasian, P. G., Ballouz, R. L., Becker, K. J., et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science, 2019, 366(6470): 3544.

156

Molaro, J. L., Hergenrother, C. W., Chesley, S. R., Walsh, K. J., Hanna, R. D., Haberle, C. W., Schwartz, S. R., Ballouz, R. L., Bottke, W. F., Campins, H. J., et al. Thermal fatigue as a driving mechanism for activity on asteroid Bennu. Journal of Geophysical Research: Planets, 2020, 125(8): e2019JE006325.

157

Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W. F., Beshore, E., Vokrouhlický, D., Delbò, M., Michel, P. Super-catastrophic disruption of asteroids at small perihelion distances. Nature, 2016, 530(7590): 303-306.

158

Fulle, M., Marzari, F., Della Corte, V., Fornasier, S., Sierks, H., Rotundi, A., Barbieri, C., Lamy, P. L., Rodrigo, R., Koschny, D., et al. Evolution of the dust size distribution of comet 67P/Churyumov-Gerasimenko from 2.2 au to perihelion. The Astrophysical Journal Letters, 2016, 821(1): 19.

159

Bertaux, J. L. Estimate of the erosion rate from H2O mass-loss measurements from SWAN/SOHO in previous perihelions of comet 67P/Churyumov-Gerasimenko and connection with observed rotation rate variations. Astronomy & Astrophysics, 2015, 583: A38.

160

Steckloff, J. K., Lisse, C. M., Safrit, T. K., Bosh, A. S., Lyra, W., Sarid, G. The sublimative evolution of (486958) Arrokoth. Icarus, 2021, 356: 113998.

161

Zhao, Y., Rezac, L., Skorov, Y., Hu, S. C., Samarasinha, N. H., Li, J. Y. Sublimation as an effective mechanism for flattened lobes of (486958) Arrokoth. Nature Astronomy, 2021, 5(2): 139-144.

162

Groussin, O., A'Hearn, M. F., Li, J. Y., Thomas, P. C., Sunshine, J. M., Lisse, C. M., Meech, K. J., Farnham, T. L., Feaga, L. M., Delamere, W. A. Surface temperature of the nucleus of Comet 9P/Tempel 1. Icarus, 2007, 187(1): 16-25.

163

Alí-Lagoa, V., Delbo', M., Libourel, G. Rapid temperature changes and the early activity on comet 67P/Churyumov-Gerasimenko. The Astrophysical Journal Letters, 2015, 810(2): L22.

164

Hirabayashi, M., Scheeres, D. J., Chesley, S. R., Marchi, S., McMahon, J. W., Steckloff, J., Mottola, S., Naidu, S. P., Bowling, T. Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov-Gerasimenko. Nature, 2016, 534(7607): 352-355.

165

Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus, 2000, 148(1): 2-11.

166

Vokrouhlický, D., Nesvorný, D., Bottke, W. F. The vector alignments of asteroid spins by thermal torques. Nature, 2003, 425(6954): 147-151.

167

Pravec, P., Harris, A. W., Vokrouhlický, D., Warner, B. D., Kušnirák, P., Hornoch, K., Pray, D. P., Higgins, D., Oey, J., Galád, A., et al. Spin rate distribution of small asteroids. Icarus, 2008, 197(2): 497-504.

168

Taylor, P. A., Margot, J. L., Vokrouhlický, D., Scheeres, D. J., Pravec, P., Lowry, S. C., Fitzsimmons, A., Nolan, M. C., Ostro, S. J., Benner, L. A. M., et al. Spin rate of asteroid (54509) 2000 PH5 increasing due to the YORP effect. Science, 2007, 316(5822): 274-277.

169

Kaasalainen, M., Ďurech, J., Warner, B. D., Krugly, Y. N., Gaftonyuk, N. M. Acceleration of the rotation of asteroid 1862 Apollo by radiation torques. Nature, 2007, 446(7134): 420-422.

170

Ďurech, J., Vokrouhlický, D., Kaasalainen, M., Higgins, D., Krugly, Y. N., Gaftonyuk, N. M., Shevchenko, V. G., Chiorny, V. G., Hamanowa, H., Hamanowa, H., et al. Detection of the YORP effect in asteroid (1620) Geographos. Astronomy & Astrophysics, 2008, 489(2): L25-L28.

171

Hartmann, W. K., Larson, S. M. Angular momenta of planetary bodies. Icarus, 1967, 7(1-3): 257-260.

172

Chandrasekhar, S. Ellipsoidal figures of equilibrium—An historical account. Communications on Pure and Applied Mathematics, 1967, 20(2): 251-265.

173

Weidenschilling, S. J. How fast can an asteroid spin? Icarus, 1981, 46(1): 124-126.

174
Warner, B. D., Harris, A. W., Pravec, P. The asteroid lightcurve database. Icarus, 2009, 202(1): 134-146. Updated 2021 May 15. http://www.MinorPlanet.info/php/lcdb.php. https://doi.org/10.1016/j.icarus.2009.02.003
DOI
175

Hestroffer, D., Sánchez, P., Staron, L., Bagatin, A. C., Eggl, S., Losert, W., Murdoch, N., Opsomer, E., Radjai, F., Richardson, D. C., et al. Small Solar System Bodies as granular media. The Astronomy and Astrophysics Review, 2019, 27(1): 6.

176

Holsapple, K. A. Equilibrium configurations of solid cohesionless bodies. Icarus, 2001, 154(2): 432-448.

177

Holsapple, K. A. Equilibrium figures of spinning bodies with self-gravity. Icarus, 2004, 172(1): 272-303.

178

Sharma, I., Jenkins, J. T., Burns, J. A. Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids. Icarus, 2009, 200(1): 304-322.

179

Scheeres, D. J., Hartzell, C. M., Sánchez, P., Swift, M. Scaling forces to asteroid surfaces: The role of cohesion. Icarus, 2010, 210(2): 968-984.

180

Sánchez, P., Scheeres, D. J. The strength of regolith and rubble pile asteroids. Meteoritics & Planetary Science, 2014, 49(5): 788-811.

181

Holsapple, K. A. Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus, 2007, 187(2): 500-509.

182

Holsapple, K. A. Spinning rods, elliptical disks and solid ellipsoidal bodies: Elastic and plastic stresses and limit spins. International Journal of Non-Linear Mechanics, 2008, 43(8): 733-742.

183

Richardson, D. C., Elankumaran, P., Sanderson, R. E. Numerical experiments with rubble piles: Equilibrium shapes and spins. Icarus, 2005, 173(2): 349-361.

184

Sánchez, D. P., Scheeres, D. J. DEM simulation of rotation-induced reshaping and disruption of rubble-pile asteroids. Icarus, 2012, 218(2): 876-894.

185

Hirabayashi, M., Sánchez, D. P., Scheeres, D. J. Internal structure of asteroids having surface shedding due to rotational instability. The Astrophysical Journal Letters, 2015, 808(1): 63.

186

Hirabayashi, M., Scheeres, D. J. Analysis of asteroid (216) Kleopatra using dynamical and structural constraints. The Astrophysical Journal Letters, 2013, 780(2): 160.

187

Zhang, Y., Richardson, D. C., Barnouin, O. S., Michel, P., Schwartz, S. R., Ballouz, R. L. Rotational failure of rubble-pile bodies: Influences of shear and cohesive strengths. The Astrophysical Journal Letters, 2018, 857(1): 15.

188

Hu, S. C., Richardson, D. C., Zhang, Y., Ji, J. H. Critical spin periods of sub-km-sized cohesive rubble-pile asteroids: Dependences on material parameters. Monthly Notices of the Royal Astronomical Society, 2021, 502(4): 5277-5291.

189
Zhang, Y., Michel, P., Richardson, D. C., Barnouin, O. S., Agrusa, H. F., Tsiganis, K., Manzoni, C., May, B. H. Creep stability of the DART/Hera mission target 65803 Didymos: Ⅱ. The role of cohesion. Icarus, 2021, 362: 114433.https://doi.org/10.1016/j.icarus.2021.114433
DOI
190

Harris, A. W., Fahnestock, E. G., Pravec, P. On the shapes and spins of "rubble pile" asteroids. Icarus, 2009, 199(2): 310-318.

191

Cheng, B., Yu, Y., Asphaug, E., Michel, P., Richardson, D. C., Hirabayashi, M., Yoshikawa, M., Baoyin, H. X. Reconstructing the formation history of top-shaped asteroids from the surface boulder distribution. Nature Astronomy, 2021, 5(2): 134-138.

192

Scheeres, D. J. Landslides and Mass shedding on spinning spheroidal asteroids. Icarus, 2015, 247: 1-17.

193

Walsh, K. J., Richardson, D. C., Michel, P. Rotational breakup as the origin of small binary asteroids. Nature, 2008, 454(7201): 188-191.

194

Margot, J. L., Nolan, M. C., Benner, L. A. M., Ostro, S. J., Jurgens, R. F., Giorgini, J. D., Slade, M. A., Campbell, D. B. Binary asteroids in the near-Earth object population. Science, 2002, 296(5572): 1445-1448.

195

Ostro, S. J., Margot, J. L., Benner, L. A., Giorgini, J. D., Scheeres, D. J., Fahnestock, E. G., Broschart, S. B., Bellerose, J., Nolan, M. C., Magri, C., et al. Radar imaging of binary near-Earth asteroid (66391) 1999 KW4. Science, 2006, 314(5803): 1276-1280.

196

Jewitt, D., Agarwal, J., Weaver, H., Mutchler, M., Larson, S. The extraordinary multi-tailed main-belt comet P/2013 P5. The Astrophysical Journal Letters, 2013, 778(1): L21.

197

Walsh, K. J., Richardson, D. C., Michel, P. Spin-up of rubble-pile asteroids: Disruption, satellite formation, and equilibrium shapes. Icarus, 2012, 220(2): 514-529.

198

Walsh, K. J., Jawin, E. R., Ballouz, R. L., Barnouin, O. S., Bierhaus, E. B., Connolly, H. C., Molaro, J. L., McCoy, T. J., Delbo', M., Hartzell, C. M., et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nature Geoscience, 2019, 12(4): 242-246.

199

Scheeres, D. J. Rotational fission of contact binary asteroids. Icarus, 2007, 189(2): 370-385.

200

Jacobson, S. A., Scheeres, D. J. Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems. Icarus, 2011, 214(1): 161-178.

201

Pravec, P., Vokrouhlický, D., Polishook, D., Scheeres, D. J., Harris, A. W., Galád, A., Vaduvescu, O., Pozo, F., Barr, A., Longa, P., et al. Formation of asteroid pairs by rotational fission. Nature, 2010, 466(7310): 1085-1088.

202

Hirabayashi, M., Scheeres, D. J. Rotationally induced failure of irregularly shaped asteroids. Icarus, 2019, 317: 354-364.

203

Sánchez, P., Scheeres, D. J. Disruption patterns of rotating self-gravitating aggregates: A survey on angle of friction and tensile strength. Icarus, 2016, 271: 453-471.

204

Hirabayashi, M., Scheeres, D. J., Sánchez, D. P., Gabriel, T. Constraints on the physical properties of main belt comet P/2013 R3 from its breakup event. The Astrophysical Journal Letters, 2014, 789(1): L12.

205

Jewitt, D., Agarwal, J., Li, J., Weaver, H., Mutchler, M., Larson, S. Anatomy of an asteroid breakup: The case of P/2013 R3. The Astronomical Journal, 2017, 153(5): 223.

206

Sekanina, Z., Chodas, P. W., Yeomans, D. K. Tidal disruption and the appearance of periodic comet Shoemaker-Levy 9. Astronomy & Astrophysics, 1994, 289: 607-636.

207

Roche, E. A. Mémoire sur la figure d'une masse fluide, soumise á l'attraction d'un point é loigné. Académie des sciences de Montpellier: Mémoires de la section des sciences, 1847, 1: 243-262.

208

Holsapple, K. A., Michel, P. Tidal disruptions: A continuum theory for solid bodies. Icarus, 2006, 183(2): 331-348.

209
Holsapple, K. A., Michel, P. Tidal disruptions: Ⅱ. A continuum theory for solid bodies with strength, with applications to the Solar System. Icarus, 2008, 193(1): 283-301.https://doi.org/10.1016/j.icarus.2007.09.011
DOI
210

Asphaug, E., Benz, W. Density of comet Shoemaker-Levy 9 deduced by modelling breakup of the parent 'rubble pile'. Nature, 1994, 370(6485): 120-124.

211

Asphaug, E., Benz, W. Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus, 1996, 121(2): 225-248.

212

Richardson, D. C., Bottke, W. F., Love, S. G. Tidal distortion and disruption of Earth-crossing asteroids. Icarus, 1998, 134(1): 47-76.

213

Walsh, K. J., Richardson, D. C. Binary near-Earth asteroid formation: Rubble pile model of tidal disruptions. Icarus, 2006, 180(1): 201-216.

214

Zhang, Y., Michel, P. Tidal distortion and disruption of rubble-pile bodies revisited. Astronomy & Astrophysics, 2020, 640: A102.

215

Bottke, W. F. Jr., Richardson, D. C., Michel, P., Love, S. G. 1620 Geographos and 433 Eros: Shaped by planetary tides? The Astronomical Journal, 1999, 117(4): 1921-1928.

216

Zhang, Y., Lin, D. N. C. Tidal fragmentation as the origin of 1I/2017 U1 ('Oumuamua). Nature Astronomy, 2020, 4(9): 852-860.

217

Schunová, E., Jedicke, R., Walsh, K. J., Granvik, M., Wainscoat, R. J., Haghighipour, N. Properties and evolution of NEO families created by tidal disruption at Earth. Icarus, 2014, 238: 156-169.

218

Schunová, E., Granvik, M., Jedicke, R., Gronchi, G., Wainscoat, R., Abe, S. Searching for the first near-Earth object family. Icarus, 2012, 220(2): 1050-1063.

219

Brozović, M., Benner, L. A. M., McMichael, J. G., Giorgini, J. D., Pravec, P., Scheirich, P., Magri, C., Busch, M. W., Jao, J. S., Lee, C. G., et al. Goldstone and Arecibo radar observations of (99942) Apophis in 2012-2013. Icarus, 2018, 300: 115-128.

220

Yu, Y., Richardson, D. C., Michel, P., Schwartz, S. R., Ballouz, R. L. Numerical predictions of surface effects during the 2029 close approach of Asteroid 99942 Apophis. Icarus, 2014, 242: 82-96.

221

Hirabayashi, M., Kim, Y., Brozović, M. Finite element modeling to characterize the stress evolution in asteroid (99942) Apophis during the 2029 Earth encounter. Icarus, 2021, 365: 114493.

222

Souchay, J., Lhotka, C., Heron, G., Hervé, Y., Puente, V., Folgueira Lopez, M. Changes of spin axis and rate of the asteroid (99942) Apophis during the 2029 close encounter with Earth: A constrained model. Astronomy & Astrophysics, 2018, 617: A74.

223

DeMartini, J. V., Richardson, D. C., Barnouin, O. S., Schmerr, N. C., Plescia, J. B., Scheirich, P., Pravec, P. Using a discrete element method to investigate seismic response and spin change of 99942 Apophis during its 2029 tidal encounter with Earth. Icarus, 2019, 328: 93-103.

224

Binzel, R., Barbee, B. W., Barnouin, O. S., Bell, J. F., Birlan, M., Boley, A., Bottke, W., Brozovic, M., Cahill, J. T., Campins, H., et al. Apophis 2029: Decadal opportunity for the science of planetary defense. Bulletin of the American Astronomical Society, 2021, 53(4): 045.

225

Hurley, J. R., Pols, O. R., Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Monthly Notices of the Royal Astronomical Society, 2000, 315(3): 543-569.

226

Althaus, L. G., Córsico, A. H., Isern, J., García-Berro, E. Evolutionary and pulsational properties of white dwarf stars. The Astronomy and Astrophysics Review, 2010, 18(4): 471-566.

227

Veras, D., Jacobson, S. A., Gänsicke, B. T. Post-main-sequence debris from rotation-induced YORP break-up of small bodies. Monthly Notices of the Royal Astronomical Society, 2014, 445(3): 2794-2799.

228

Veras, D., Eggl, S., Gänsicke, B. T. The orbital evolution of asteroids, pebbles and planets from giant branch stellar radiation and winds. Monthly Notices of the Royal Astronomical Society, 2015, 451(3): 2814-2834.

229

Veras, D., Higuchi, A., Ida, S. Speeding past planets? Asteroids radiatively propelled by giant branch Yarkovsky effects. Monthly Notices of the Royal Astronomical Society, 2019, 485(1): 708-724.

230

Debes, J. H., Sigurdsson, S. Are there unstable planetary systems around white dwarfs? The Astrophysical Journal Letters, 2002, 572(1): 556-565.

231

Adams, F. C., Anderson, K. R., Bloch, A. M. Evolution of planetary systems with time-dependent stellar mass-loss. Monthly Notices of the Royal Astronomical Society, 2013, 432(1): 438-454.

232

Veras, D., Wyatt, M. C., Mustill, A. J., Bonsor, A., Eldridge, J. J. The great escape: How exoplanets and smaller bodies desert dying stars. Monthly Notices of the Royal Astronomical Society, 2011, 417(3): 2104-2123.

233

Rafikov, R. R. 1I/2017 'Oumuamua-like interstellar asteroids as possible messengers from dead stars. The Astrophysical Journal Letters, 2018, 861(1): 35.

234

Jura, M., Farihi, J., Zuckerman, B. Externally polluted white dwarfs with dust disks. The Astrophysical Journal Letters, 2007, 663(2): 1285-1290.

235

Jura, M. A tidally disrupted asteroid around the white dwarf G29-38. The Astrophysical Journal Letters, 2003, 584(2): L91-L94.

236

Chen, D. C., Zhou, J. L., Xie, J. W., Yang, M., Zhang, H., Liu, H. G., Liang, E. S., Yu, Z. Y., Yang, J. Y. A power-law decay evolution scenario for polluted single white dwarfs. Nature Astronomy, 2019, 3(1): 69-75.

237

Malamud, U., Perets, H. B. Tidal disruption of planetary bodies by white dwarfs I: A hybrid SPH-analytical approach. Monthly Notices of the Royal Astronomical Society, 2020, 492(4): 5561-5581.

238

Zhang, Y., Liu, S. F., Lin, D. N. C. Orbital migration and circularization of tidal debris by Alfvén-wave drag: Circumstellar debris and pollution around white dwarfs. The Astrophysical Journal Letters, 2021, 915(2): 91.

239
Veras, D. Planetary systems around white dwarfs. arXiv preprints, 2021, arXiv: 2106.06550.https://doi.org/10.1093/acrefore/9780190647926.013.238
DOI
240

Vernazza, P., Ferrais, M., Jorda, L., Hanuš, J., Carry, B., Marsset, M., Brož, M., Fetick, R., Viikinkoski, M., Marchis, F., et al. VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy & Astrophysics, 2021, 654: A56.

241

Kanamaru, M., Sasaki, S., Wieczorek, M. Density distribution of asteroid 25143 Itokawa based on smooth terrain shape. Planetary and Space Science, 2019, 174: 32-42.

242

Buczkowski, D. L., Barnouin-Jha, O. S., Prockter, L. M. 433 Eros lineaments: Global mapping and analysis. Icarus, 2008, 193(1): 39-52.

243
Asphaug, E. Shattered dirt: Surface fracture of granular asteroids. In: Proceedings of the 40th Annual Lunar and Planetary Science Conference, Lunar and Planetary Science Conference, 2009: 1438.
244

Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M. E., Kimura, M., Tsuchiyama, A., Nakato, A., Ogami, T., Ishida, H., Uesugi, M., et al. Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science, 2011, 333(6046): 1113-1116.

245

Wilkison, S. L., Robinson, M. S., Thomas, P. C., Veverka, J., McCoy, T. J., Murchie, S. L., Prockter, L. M., Yeomans, D. K. An estimate of eros's porosity and implications for internal structure. Icarus, 2002, 155(1): 94-103.

246

Abe, S., Mukai, T., Hirata, N., Barnouin-Jha, O. S., Cheng, A. F., Demura, H., Gaskell, R. W., Hashimoto, T., Hiraoka, K., Honda, T., et al. Mass and local topography measurements of Itokawa by Hayabusa. Science, 2006, 312(5778): 1344-1347.

247

Richardson, J. E., Melosh, H. J., Greenberg, R. Impact-induced seismic activity on Asteroid 433 Eros: A surface modification process. Science, 2004, 306(5701): 1526-1529.

248

Michel, P., O'Brien, D. P., Abe, S., Hirata, N. Itokawa's cratering record as observed by Hayabusa: Implications for its age and collisional history. Icarus, 2009, 200(2): 503-513.

249

Tatsumi, E., Sugita, S. Cratering efficiency on coarse-grain targets: Implications for the dynamical evolution of asteroid 25143 Itokawa. Icarus, 2018, 300: 227-248.

250

Sugita, S., Honda, R., Morota, T., Kameda, S., Sawada, H., Tatsumi, E., Yamada, M., Honda, C., Yokota, Y., Kouyama, T., et al. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science, 2019, 364(6437): eaaw0422.

251

Michikami, T., Honda, C., Miyamoto, H., Hirabayashi, M., Hagermann, A., Irie, T., Nomura, K., Ernst, C. M., Kawamura, M., Sugimoto, K., et al. Boulder size and shape distributions on asteroid Ryugu. Icarus, 2019, 331: 179-191.

252

Hirabayashi, M., Tatsumi, E., Miyamoto, H., Komatsu, G., Sugita, S., Watanabe, S. I., Scheeres, D. J., Barnouin, O. S., Michel, P., Honda, C., et al. The western bulge of 162173 Ryugu formed as a result of a rotationally driven deformation process. The Astrophysical Journal Letters, 2019, 874(1): L10.

253
Miyamoto, H., Hemmi, R., Kikuchi, H., Komatsu, G., Honda, C., Michikami, T., Morota, T., Cho, Y., Mitchel, P., Barnouin, O. S., et al. Geological characteristics and history of Asteroid Ryugu. In: Proceedings of the 51st Annual Lunar and Planetary Science Conference, Lunar and Planetary Science Conference, 2020: 1985.
254

Grott, M., Knollenberg, J., Hamm, M., Ogawa, K., Jaumann, R., Otto, K. A., Delbo, M., Michel, P., Biele, J., Neumann, W., et al. Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu. Nature Astronomy, 2019, 3(11): 971-976.

255

Okada, T., Fukuhara, T., Tanaka, S., Taguchi, M., Arai, T., Senshu, H., Sakatani, N., Shimaki, Y., Demura, H., Ogawa, Y., et al. Highly porous nature of a primitive asteroid revealed by thermal imaging. Nature, 2020, 579(7800): 518-522.

256

Sakatani, N., Tanaka, S., Okada, T., Fukuhara, T., Riu, L., Sugita, S., Honda, R., Morota, T., Kameda, S., Yokota, Y., et al. Anomalously porous boulders on (162173) Ryugu as primordial materials from its parent body. Nature Astronomy, 2021, 5(8): 766-774.

257

Arakawa, M., Saiki, T., Wada, K., Ogawa, K., Kadono, T., Shirai, K., Sawada, H., Ishibashi, K., Honda, R., Sakatani, N., et al. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, 2020, 368(6486): 67-71.

258

Honda, R., Arakawa, M., Shimaki, Y., Shirai, K., Yokota, Y., Kadono, T., Wada, K., Ogawa, K., Ishibashi, K., Sakatani, N., et al. Resurfacing processes on asteroid (162173) Ryugu caused by an artificial impact of Hayabusa2's Small Carry-on Impactor. Icarus, 2021, 366: 114530.

259
Barnouin, O. S., Daly, M. G., Seabrook, J., Zhang, Y., Michel, P., Thuillet, F., Roberts, J. H., Perry, M. E., Daly, R, T., Susorney, H. C. M., et al. Ongoing shape modification of Bennu by terracing. In: Proceedings of the AGU Fall Meeting Abstracts, 2020, 2020: 037-06.
260

Scheeres, D. J., French, A. S., Tricarico, P., Chesley, S. R., Takahashi, Y., Farnocchia, D., McMahon, J. W., Brack, D. N., Davis, A. B., Ballouz, R. L., et al. Heterogeneous mass distribution of the rubble-pile asteroid (101955) Bennu. Science Advances, 2020, 6(41): eabc3350.

261

Jorda, L., Gaskell, R., Capanna, C., Hviid, S., Lamy, P., Ďurech, J., Faury, G., Groussin, O., Gutiérrez, P., Jackman, C., et al. The global shape, density and rotation of comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus, 2016, 277: 257-278.

262

Kömle, N. I., Macher, W., Tiefenbacher, P., Kargl, G., Pelivan, I., Knollenberg, J., Spohn, T., Jorda, L., Capanna, C., Lommatsch, V., et al. Three-dimensional illumination and thermal model of the Abydos region on comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469: S2-S19.

263

Kofman, W., Herique, A., Barbin, Y., Barriot, J. P., Ciarletti, V., Clifford, S., Edenhofer, P., Elachi, C., Eyraud, C., Goutail, J. P., et al. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science, 2015, 349(6247): aab0639.

264

Ciarletti, V., Herique, A., Lasue, J., Levasseur-Regourd, A. C., Plettemeier, D., Lemmonier, F., Guiffaut, C., Pasquero, P., Kofman, W. CONSERT constrains the internal structure of 67P at a few metres size scale. Monthly Notices of the Royal Astronomical Society, 2017, 469: S805-S817.

265

Kofman, W., Zine, S., Herique, A., Rogez, Y., Jorda, L., Levasseur-Regourd, A. C. The interior of Comet 67P/C-G; revisiting CONSERT results with the exact position of the Philae lander. Monthly Notices of the Royal Astronomical Society, 2020, 497(3): 2616-2622.

266

Lethuillier, A., Le Gall, A., Hamelin, M., Schmidt, W., Seidensticker, K. J., Grard, R., Ciarletti, V., Caujolle-Bert, S., Fischer, H. H., Trautner, R. Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenko. Astronomy & Astrophysics, 2016, 591: A32.

267

Barucci, M. A., Filacchione, G., Fornasier, S., Raponi, A., Deshapriya, J. D. P., Tosi, F., Feller, C., Ciarniello, M., Sierks, H., Capaccioni, F., et al. Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy & Astrophysics, 2016, 595: A102.

268

Vincent, J. B., A'Hearn, M. F., Lin, Z. Y., El-Maarry, M. R., Pajola, M., Sierks, H., Barbieri, C., Lamy, P. L., Rodrigo, R., Koschny, D., et al. Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society, 2016, 462: S184-S194.

269

Thomas, N., Sierks, H., Barbieri, C., Lamy, P. L., Rodrigo, R., Rickman, H., Koschny, D., Keller, H. U., Agarwal, J., A'Hearn, M. F., et al. The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347(6220): aaa0440.

270

Attree, N., Groussin, O., Jorda, L., Nébouy, D., Thomas, N., Brouet, Y., Kührt, E., Preusker, F., Scholten, F., Knollenberg, J., et al. Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs. Astronomy & Astrophysics, 2018, 611: A33.

271

Barucci, M. A., Fulchignoni, M. Major achievements of the Rosetta mission in connection with the origin of the solar system. The Astronomy and Astrophysics Review, 2017, 25(1): 3.

272

Fulle, M., Corte, V. D., Rotundi, A., Weissman, P., Juhasz, A., Szego, K., Sordini, R., Ferrari, M., Ivanovski, S., Lucarelli, F., et al. Density and charge of pristine fluffy particles from comet 67P/Churyumov-Gerasimenko. The Astrophysical Journal Letters, 2015, 802(1): L12.

273

Mannel, T., Bentley, M. S., Schmied, R., Jeszenszky, H., Levasseur-Regourd, A. C., Romstedt, J., Torkar, K. Fractal cometary dust—A window into the early Solar system. Monthly Notices of the Royal Astronomical Society, 2016, 462: S304-S311.

274

Fulle, M., Blum, J. Fractal dust constrains the collisional history of comets. Monthly Notices of the Royal Astronomical Society, 2017, 469: S39-S44.

275

Jenniskens, P., Shaddad, M. H., Numan, D., Elsir, S., Kudoda, A. M., Zolensky, M. E., Le, L., Robinson, G. A., Friedrich, J. M., Rumble, D., et al. The impact and recovery of asteroid 2008 TC3. Nature, 2009, 458(7237): 485-488.

276

Okada, T., Kebukawa, Y., Aoki, J., Matsumoto, J., Yano, H., Iwata, T., Mori, O., Bibring, J. P., Ulamec, S., Jaumann, R., et al. Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail. Planetary and Space Science, 2018, 161: 99-106.

277

Cheng, A. F., Rivkin, A. S., Michel, P., Atchison, J., Barnouin, O., Benner, L., Chabot, N. L., Ernst, C., Fahnestock, E. G., Kueppers, M., et al. AIDA DART asteroid deflection test: Planetary defense and science objectives. Planetary and Space Science, 2018, 157: 104-115.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2021
Accepted: 01 December 2021
Published: 19 December 2021
Issue date: December 2021

Copyright

© Tsinghua University Press 2021

Acknowledgements

Acknowledgements

We thank W. F. Bottke for his helpful and constructive comments. We acknowledge the support of the French Space Agency CNES for their participation in the various space missions devoted to asteroids, as well as the ESA. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 870377 (project NEO-MAPP). Yun Zhang acknowledges funding support from the Doeblin Federation and from the program Bonus, Qualité, Recherche (BQR) of the Observatoire de la Côte d'Azur.

Return