Journal Home > Volume 5 , Issue 2

Resident space object population in highly elliptical high perigee altitude ( > 600 km) orbits is significantly affected by luni-solar gravity. Using regularization, an analytical orbit theory with luni-solar gravity effects as third-body perturbations in terms of Kustaanheimo-Stiefel regular elements is developed. Numerical tests with different cases resulted in good accuracy for both short- and long-term orbit propagations. It is observed that the luni-solar perturbations affect the accuracy of the analytical solution seasonally. The analytical theory is tested with the observed orbital parameters of the few objects in highly elliptical orbits. The analytical evolution of osculating perigee altitude is found to be concurrent with observed data. Solar perturbation, when compared with lunar perturbation, is established to be dominant over such orbits.


menu
Abstract
Full text
Outline
About this article

Regularized luni-solar gravity dynamics on resident space objects

Show Author's information Harishkumar Sellamuthu1( )Ram Krishan Sharma2
Agnikul Cosmos Private Limited, Indian Institute of Technology Madras, Chennai 600036, India
Department of Aerospace Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India

Abstract

Resident space object population in highly elliptical high perigee altitude ( > 600 km) orbits is significantly affected by luni-solar gravity. Using regularization, an analytical orbit theory with luni-solar gravity effects as third-body perturbations in terms of Kustaanheimo-Stiefel regular elements is developed. Numerical tests with different cases resulted in good accuracy for both short- and long-term orbit propagations. It is observed that the luni-solar perturbations affect the accuracy of the analytical solution seasonally. The analytical theory is tested with the observed orbital parameters of the few objects in highly elliptical orbits. The analytical evolution of osculating perigee altitude is found to be concurrent with observed data. Solar perturbation, when compared with lunar perturbation, is established to be dominant over such orbits.

Keywords: regularization, luni-solar perturbations, Kustaanheimo-Stiefel (KS) transformation

References(44)

[1]
A. Cook, Success and failure in Newton’s lunar theory. Astronomy and Geophysics, 2000, 41(6): 6.21-6.25.
[2]
E. Upton,, A. Bailie,, P. Musen, Lunar and solar perturbations on satellite orbits. Science, 1959, 130(3390): 1710-1711.
[3]
D. Rex,, J. Bendisch,, W. Flury,, H. Klinkrad, The ESA space debris mitigation handbook. Advances in Space Research, 1999, 23(1): 215-225.
[4]
Y. Kozai, On the effects of the Sun and the Moon on the motion of a close-Earth satellite. Smithsonian Contributions to Astrophysics, 1963.
[5]
L. Blitzer, Lunar-solar perturbations of an earth satellite. American Journal of Physics, 1959, 27(9): 634-645.
[6]
G. E. Cook, Luni-solar perturbations of the orbit of an earth satellite. Geophysical Journal of the Royal Astronomical Society, 1962, 6(3): 271-291.
[7]
W. M. Kaula, Development of the lunar and solar disturbing functions for a close satellite. The Astronomical Journal, 1962, 67: 300.
[8]
Y. Kozai, A new method to compute Lunisolar perturbations in satellite motions. Smithsonian Contri-butions to Astrophysics Special Report, 1973: 235.
[9]
G. E. O. Giacaglia, Lunar perturbations of artificial satellites of the earth. Celestial Mechanics, 1974, 9(2): 239-267.
[10]
M. E. Hough, Orbits near critical inclination, including lunisolar perturbations. Celestial Mechanics, 1981, 25(2): 111-136.
[11]
G. C. Xu,, T. H. Xu,, T. K. Yeh,, W. Chen, Analytical solution of a satellite orbit disturbed by lunar and solar gravitation. Monthly Notices of the Royal Astronomical Society, 2011, 410(1): 645-653.
[12]
C. R. H. Solórzano,, A. F. B. de Almeida Prado, Third-body perturbation using a single averaged model: Application in nonsingular variables. Mathematical Problems in Engineering, 2007, 2007: 1-14.
[13]
M. Lara,, J. F. San-Juan,, L. M. López,, P. J. Cefola, On the third-body perturbations of high-altitude orbits. Celestial Mechanics and Dynamical Astronomy, 2012, 113(4): 435-452.
[14]
C. Colombo, Long-term evolution of highly-elliptical orbits: Luni-solar perturbation effects for stability and re-entry. Frontiers in Astronomy and Space Sciences, 2019, 6: 34.
[15]
R. A. Broucke, Long-term third-body effects via double averaging. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 27-32.
[16]
P. Kustaanheimo,, A. Schinzel,, H. Davenport,, E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization. Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 1965, 1965(218): 204-219.
[17]
E. L. Stiefel,, G. Scheifele, Linear and Regular Celestial Mechanics. New York: Springer-Verlag Berlin Heidelberg, 1971.
DOI
[18]
K. F. Sundman, Mémoire sur le problème des trois corps. Acta Mathematica, 1913, 36: 105-179.
[19]
W. R.Hamilton, On quaternions, or on a new system of imaginaries in algebra. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1844: 35.
[20]
H. Hopf, Über die abbildungen der dreidimensionalen sphäre auf die kugelfläche. Mathematische Annalen, 1931, 104(1): 637-665.
[21]
R. K. Sharma, Analytical integration of K-S element equations with J2 for short-term orbit predictions. Planetary and Space Science, 1997, 45(11): 1481-1486.
[22]
R. K. Sharma, Analytical approach using KS elements to near-Earth orbit predictions including drag. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 433(1887): 121-130.
[23]
R. K. Sharma, A third-order theory for the effect of drag on Earth satellite orbits. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1992, 438(1904): 467-475.
[24]
R. K. Sharma, Contraction of satellite orbits using KS elements in an oblate diurnally varying atmosphere. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1997, 453(1966): 2353-2368.
[25]
R. K. Sharma, Contraction of high eccentricity satellite orbits using K-S elements with air drag. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1974): 1681-1689.
[26]
R. K. Sharma,, M. Xavier James Raj, Fourth-order theories for orbit predictions for low- and high-eccentricity orbits in an oblate atmosphere with scale height dependent on altitude. Acta Astronautica, 2009, 65(9-10): 1336-1344.
[27]
H. Sellamuthu,, R. K. Sharma, Orbit theory with lunar perturbation in terms of Kustaanheimo-Stiefel regular elements. Journal of Guidance, Control, and Dynamics, 2017, 40(5): 1272-1277.
[28]
R. K. Sharma, Analytical approach using KS elements to short-term orbit predictions including J2. Celestial Mechanics and Dynamical Astronomy, 1989, 46(4): 321-333.
[29]
R. K. Sharma, Analytical short-term orbit predictions with J3 and J4 in terms of KS elements. Celestial Mechanics & Dynamical Astronomy, 1993, 56(4): 503-521.
[30]
R. K. Sharma,, L. Mani, Study of RS-1 orbital decay with KS differential equations. Indian Journal of Pure and Applied Mathematics, 1985, 16(7): 833-842.
[31]
R. K. Sharma,, M. X. J. Raj, Analytical short-term orbit predictions with J2 to J6 in terms of KS elements. Indian Journal of Pure and Applied Mathematics, 1997, 28(9): 1155-1175.
[32]
H. Sellamuthu,, R. K. Sharma, Hybrid orbit propagator for small spacecraft using Kustaanheimo-Stiefel elements. Journal of Spacecraft and Rockets, 2018, 55(5): 1282-1288.
[33]
T. Levi-Civita, Sur la résolution qualitative du problème restreint des trois corps. Acta Mathematica, 1906, 30: 305-327.
[34]
S. Breiter,, K. Langner, The Lissajous-Kustaanheimo-Stiefel transformation. Celestial Mechanics and Dynamical Astronomy, 2019, 131(2): 9.
[35]
J. Roa,, H. Urrutxua,, J. Peláez, Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration. Monthly Notices of the Royal Astronomical Society, 2016, 459(3): 2444-2454.
[36]
J. Roa, Regularization in Orbital Mechanics; Theory and Practice. Berlin/Boston: De Gruyter, 2017.
DOI
[37]
M. Blanco-Muriel,, D. C. Alarcón-Padilla,, T. López-Moratalla,, M. Lara-Coira, Computing the solar vector. Solar Energy, 2001, 70(5): 431-441.
[38]
D. Simpson, An alternative lunar ephemeris model for on-board flight software use. In: Proceedings of the 1999 NASA/GSFC Flight Mechanics Symposium, 1999: 175-184.
[39]
S. Gill, A process for the step-by-step integration of differential equations in an automatic digital computing machine. Mathematical Proceedings of the Cambridge Philosophical Society, 1951, 47(1): 96-108.
[40]
E. Hairer,, S. P. Nørsett,, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag Berlin Heidelberg, 1993.
[41]
F. R. Hoots,, R. L. Roehrich, Models for Propagation of the NORAD Element Sets. Spacetrack Report No. 3. U.S. Air Force Aerospace Defense Command, Colorado Spring CO, 1980.
DOI
[42]
M. L. Lidov, The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planetary and Space Science, 1962, 9(10): 719-759.
[43]
B. E. Shute,, J. Chiville, The lunar-solar effect on the orbital lifetimes of artificial satellites with highly eccentric orbits. Planetary and Space Science, 1966, 14(4): 361-369.
[44]
R. Sharma,, P. Bandyopadhyay,, V. Adimurthy, Consideration of lifetime limitation for spent stages in GTO. Advances in Space Research, 2004, 34(5): 1227-1232.
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2019
Accepted: 09 May 2020
Published: 07 September 2020
Issue date: June 2021

Copyright

© Tsinghua University Press 2020

Acknowledgements

The authors gratefully acknowledge the support received by grant SR/S4/MS: 801/12 from Department of Science and Technology-Science and Engineering Research Board (DST-SERB), India.

Return