Journal Home > Volume 9 , Issue 3

Recognizing dynamic variations on the ground, especially changes caused by various natural disasters, is critical for assessing the severity of thedamage and directing the disaster response. However, current workflows for disaster assessment usually require human analysts to observe and identify damaged buildings, which is labor-intensive and unsuitable for large-scale disaster areas. In this paper, we propose a difference-aware attention network (D2ANet) for simultaneous building localization and multi-level change detection from the dual-temporal satellite imagery. Considering the differences in different channels in the features of pre- and post-disaster images, we develop a dual-temporal aggregation module using paired features to excite change-sensitive channels of the features and learn the global change pattern. Since the nature of building damage caused by disasters is diverse in complex environments, we design a difference-attention module to exploit local correlations among the multi-level changes, which improves the ability to identify damage on different scales. Extensive experiments on the large-scale building damage assessment dataset xBD demonstrate that our approach provides new state-of-the-art results. Source code is publicly available at https://github.com/mj129/D2ANet.


menu
Abstract
Full text
Outline
About this article

D2ANet: Difference-aware attention network for multi-level change detection from satellite imagery

Show Author's information Jie Mei1Yi-Bo Zheng2Ming-Ming Cheng1( )
TMCC, CS, Nankai University, Tianjin 300350, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

Recognizing dynamic variations on the ground, especially changes caused by various natural disasters, is critical for assessing the severity of thedamage and directing the disaster response. However, current workflows for disaster assessment usually require human analysts to observe and identify damaged buildings, which is labor-intensive and unsuitable for large-scale disaster areas. In this paper, we propose a difference-aware attention network (D2ANet) for simultaneous building localization and multi-level change detection from the dual-temporal satellite imagery. Considering the differences in different channels in the features of pre- and post-disaster images, we develop a dual-temporal aggregation module using paired features to excite change-sensitive channels of the features and learn the global change pattern. Since the nature of building damage caused by disasters is diverse in complex environments, we design a difference-attention module to exploit local correlations among the multi-level changes, which improves the ability to identify damage on different scales. Extensive experiments on the large-scale building damage assessment dataset xBD demonstrate that our approach provides new state-of-the-art results. Source code is publicly available at https://github.com/mj129/D2ANet.

Keywords: change detection, building localization, sate-llite imagery, dual-temporal aggregation, difference attention

References(83)

[1]
Shi, W. Z.; Zhang, M.; Zhang, R.; Chen, S. X.; Zhan, Z. Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sensing Vol. 12, No. 10, 1688, 2020.
[2]
Chen, C. F.; Son, N. T.; Chang, N. B.; Chen, C. R.; Chang, L. Y.; Valdez, M.; Centeno, G.; Thompson, C. A.; Aceituno, J. L. Multi-decadal mangrove forest change detection and prediction in Honduras, central America, with landsat imagery and a Markov chain model. Remote Sensing Vol. 5, No. 12, 6408–6426, 2013.
[3]
Li, L. Y.; Yan, J. C.; Wang, H. Y.; Jin, Y. H. Anomaly detection of time series with smoothness-inducing sequential variational auto-encoder. IEEE Transactions on Neural Networks and Learning Systems Vol. 32, No. 3, 1177–1191, 2021.
[4]
Mahdavi, S.; Salehi, B.; Huang, W. M.; Amani, M.; Brisco, B. A PolSAR change detection index based on neighborhood information for flood mapping. Remote Sensing Vol. 11, No. 16, 1854, 2019.
[5]
Kim, J. Y.; Bu, S. J.; Cho, S. B. Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders. Information Sciences Vols. 460–461, 83–102, 2018.
[6]
Hauskrecht, M.; Batal, I.; Valko, M.; Visweswaran, S.; Cooper, G. F.; Clermont, G. Outlier detection for patient monitoring and alerting. Journal of Biomedical Informatics Vol. 46, No. 1, 47–55, 2013.
[7]
Singh, A. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing Vol. 10, No. 6, 989–1003, 1989.
[8]
Im, J.; Jensen, J. R. A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sensing of Environment Vol. 99, No. 3, 326–340, 2005.
[9]
Kasetkasem, T.; Varshney, P. K. An image change detection algorithm based on Markov random field models. IEEE Transactions on Geoscience and Remote Sensing Vol. 40, No. 8, 1815–1823, 2002.
[10]
Gueguen, L.; Hamid, R. Large-scale damage detection using satellite imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-nition, 1321–1328, 2015.
DOI
[11]
Liu, Z. G.; Li, G.; Mercier, G.; He, Y.; Pan, Q. Change detection in heterogenous remote sensing images via homogeneous pixel transformation. IEEE Transactions on Image Processing Vol. 27, No. 4, 1822–1834, 2018.
[12]
Fu, J.; Liu, J.; Wang, Y. H.; Zhou, J.; Wang, C. Y.; Lu, H. Q. Stacked deconvolutional network for semantic segmentation. IEEE Transactions on Image Processing , 2019.
[13]
Chen, L. C.; Zhu, Y. K.; Papandreou, G.; Schroff, F.; Adam, H. Encoder–decoder with atrous separable convolution for semantic image segmentation. In: Computer Vision – ECCV 2018. Lecture Notes in Computer Science, Vol. 11211. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 833–851, 2018.
DOI
[14]
Chen, L. C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.
[15]
Liu, Y.; Pang, C.; Zhan, Z. Q.; Zhang, X. M.; Yang, X. Building change detection for remote sensing images using a dual-task constrained deep Siamese convolutional network model. IEEE Geoscience and Remote Sensing Letters Vol. 18, No. 5, 811–815, 2021.
[16]
Wang, M. Y.; Tan, K.; Jia, X. P.; Wang, X.; Chen, Y. A deep Siamese network with hybrid convolutional feature extraction module for change detection based on multi-sensor remote sensing images. Remote Sensing Vol. 12, No. 2, 205, 2020.
[17]
Xu, J. Z.; Lu, W. H.; Li, Z. B.; Khaitan, P.; Zaytseva, V. Building damage detection in satellite imagery using convolutional neural networks. arXiv preprint arXiv:1910.06444, 2019.
[18]
Zhu, X. Y.; Liang, J. W.; Hauptmann, A. MSNet: A multilevel instance segmentation network for natural disaster damage assessment in aerial videos. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2022–2031, 2021.
DOI
[19]
Ji, M.; Liu, L. F.; Buchroithner, M. Identifying collapsed buildings using post-earthquake satellite imagery and convolutional neural networks: A case study of the 2010 Haiti earthquake. Remote Sensing Vol. 10, No. 11, 1689, 2018,
[20]
Gupta, R.; Goodman, B.; Patel, N.; Hosfelt, R.; Sajeev, S.; Heim, E.; Doshi, J.; Lucas, K.; Choset, H.; Gaston, M. Creating xBD: A dataset for assessing building damage from satellite imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 10–17, 2019.
[21]
Wu, C. Y.; Zhang, F.; Xia, J. S.; Xu, Y. C.; Li, G. Q.; Xie, J. B.; Du, Z.; Liu, R. Building damage detection using U-net with attention mechanism from pre- and post-disaster remote sensing datasets. Remote Sensing Vol. 13, No. 5, 905, 2021.
[22]
Marin, C.; Bovolo, F.; Bruzzone, L. Building change detection in multitemporal very high resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing Vol. 53, No. 5, 2664–2682, 2015.
[23]
Lu, X. Q.; Yuan, Y.; Zheng, X. T. Joint dictionary learning for multispectral change detection. IEEE Transactions on Cybernetics Vol. 47, No. 4, 884–897, 2017.
[24]
Gapper, J. J.; El-Askary, H.; Linstead, E.; Piechota, T. Coral reef change detection in remote Pacific Islands using support vector machine classifiers. Remote Sensing Vol. 11, No. 13, 1525, 2019.
[25]
Zhong, P.; Wang, R. S. A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. IEEE Transactions on Geoscience and Remote Sensing Vol. 45, No. 12, 3978–3988, 2007.
[26]
Nemmour, H.; Chibani, Y. Multiple support vector machines for land cover change detection: An appli-cation for mapping urban extensions. ISPRS Journal of Photogrammetry and Remote Sensing Vol. 61, No. 2, 125–133, 2006.
[27]
Lei, Y. J.; Peng, D.; Zhang, P. P.; Ke, Q. H.; Li, H. F. Hierarchical paired channel fusion network for street scene change detection. IEEE Transactions on Image Processing Vol. 30, 55–67, 2021.
[28]
Caye Daudt, R.; Le Saux, B.; Boulch, A. Fully convolutional Siamese networks for change detection. In: Proceedings of the 25th IEEE International Conference on Image Processing, 4063–4067, 2018.
DOI
[29]
Daudt, R. C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Guided anisotropic diffusion and iterative learning for weakly supervised change detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 1461–1470, 2019.
DOI
[30]
Papadomanolaki, M.; Verma, S.; Vakalopoulou, M.; Gupta, S.; Karantzalos, K. Detecting urban changes with recurrent neural networks from multitemporal sentinel-2 data. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 214–217, 2019.
DOI
[31]
Wu, C.; Chen, H.; Du, B.; Zhang, L. P. Unsupervised change detection in multitemporal VHR images based on deep kernel PCA convolutional mapping network. IEEE Transactions on Cybernetics Vol. 52, No. 11, 12084–12098, 2022.
[32]
Li, L. Y.; Yan, J. C.; Wen, Q. S.; Jin, Y. H.; Yang, X. K. Learning robust deep state space for unsupervised anomaly detection in contaminated time-series. IEEE Transactions on Knowledge and Data Engineering , 2022.
[33]
Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Satellite image classification of building damages using airborne and satellite image samples in a deep learning approach. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. IV, No. 2, 89–96, 2018.
[34]
Rudner, T. G. J.; Rußwurm, M.; Fil, J.; Pelich, R.; Bischke, B.; Kopačková, V.; Bilinski, P. Multi3Net: Segmenting flooded buildings via fusion of multire-solution, multisensor, and multitemporal satellite imagery. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 33, No. 1, 702–709, 2019.
[35]
Ronneberger, O.; Fischer, P.; Brox, T. U-Net:Convolutional networks for biomedical image segmen-tation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, Vol. 9351. Navab, N.; Hornegger, J.; Wells, W.; Frangi, A. Eds. Springer Cham, 234–241, 2015.
DOI
[36]
He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778, 2016.
DOI
[37]
Weber, E.; Kané, H. Building disaster damage assessment in satellite imagery with multi-temporal fusion. In: Proceedings of the International Conference on Learning Representations Workshop, 2020.
[38]
He, K. M.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, 2980–2988, 2017.
DOI
[39]
Lin, T. Y.; Dollár, P.; Girshick, R.; He, K. M.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 936–944, 2017.
DOI
[40]
Shen, Y.; Zhu, S. J.; Yang, T.; Chen, C.; Pan, D. L.; Chen, J. Y.; Xiao, L.; Du, Q. BDANet: Multiscale convolutional neural network with cross-directional attention for building damage assessment from satellite images. IEEE Transactions on Geoscience and Remote Sensing Vol. 60, Article No. 5402114, 2022.
[41]
Rüther, H.; Martine, H. M.; Mtalo, E. G. Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas. ISPRS Journal of Photogrammetry and Remote Sensing Vol. 56, No. 4, 269–282, 2002.
[42]
Tsai, V. J. D. A comparative study on shadow compensation of color aerial images in invariant color models. IEEE Transactions on Geoscience and Remote Sensing Vol. 44, No. 6, 1661–1671, 2006.
[43]
Sirmacek, B.; Unsalan, C. Building detection from aerial images using invariant color features and shadow information. In: Proceedings of the 23rd International Symposium on Computer and Information Sciences, 1–5, 2008.
DOI
[44]
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440, 2015.
DOI
[45]
Lin, D.; Zhang, R. M.; Ji, Y. F.; Li, P.; Huang, H. SCN: Switchable context network for semantic segmentation of RGB-D images. IEEE Transactions on Cybernetics Vol. 50, No. 3, 1120–1131, 2020.
[46]
Yu, J.; Yao, J. H.; Zhang, J.; Yu, Z.; Tao, D. C. SPRNet: Single-pixel reconstruction for one-stage instance segmentation. IEEE Transactions on Cybernetics Vol. 51, No. 4, 1731–1742, 2021.
[47]
Bovcon, B.; Kristan, M. WaSR—A water segmentation and refinement maritime obstacle detection network. IEEE Transactions on Cybernetics Vol. 52, No. 12, 12661–12674, 2022.
[48]
Yang, X.; Yan, J. C.; Liao, W. L.; Yang, X. K.; Tang, J.; He, T. SCRDet: Detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 45, No. 2, 2384–2399, 2023.
[49]
Yang, X.; Yan, J. C. On the arbitrary-oriented object detection: Classification based approaches revisited. International Journal of Computer Vision Vol. 130, No. 5, 1340–1365, 2022.
[50]
Van Etten, A.; Lindenbaum, D.; Bacastow, T. M. SpaceNet: A remote sensing dataset and challenge series. arXiv preprint arXiv:1807.01232, 2018.
[51]
Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raska, R. DeepGlobe 2018: A challenge to parse the earth through satellite images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 172–17209, 2018.
DOI
[52]
Hamaguchi, R.; Hikosaka, S. Building detection from satellite imagery using ensemble of size-specific detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 223–2234, 2018.
DOI
[53]
Golovanov, S.; Kurbanov, R.; Artamonov, A.; Davydow, A.; Nikolenko, S. Building detection from satellite imagery using a composite loss function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 219–222, 2018.
DOI
[54]
Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In: Proceedings of the IEEE Visual Communications and Image Processing, 1–4, 2018.
DOI
[55]
Yuan, J. Y. Learning building extraction in aerial scenes with convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 11, 2793–2798, 2018.
[56]
Wang, H. Z.; Wang, Y.; Zhang, Q.; Xiang, S. M.; Pan, C. H. Gated convolutional neural network for semantic segmentation in high-resolution images. Remote Sensing Vol. 9, No. 5, 446, 2017.
[57]
Pan, X. R.; Yang, F.; Gao, L. R.; Chen, Z. C.; Zhang, B.; Fan, H. R.; Ren, J. Building extraction from high-resolution aerial imagery using a generative adversarial network with spatial and channel attention mechanisms. Remote Sensing Vol. 11, No. 8, 917, 2019.
[58]
Zhao, K.; Kang, J.; Jung, J.; Sohn, G. Building extraction from satellite images using mask R-CNN with building boundary regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 242–246, 2018.
DOI
[59]
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł; Polosukhin, I. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000–6010, 2017.
[60]
Wang, X. L.; Girshick, R.; Gupta, A.; He, K. M. Non-local neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7794–7803, 2018.
DOI
[61]
Huang, Z. L.; Wang, X. G.; Huang, L. C.; Huang, C.; Wei, Y. C.; Liu, W. Y. CCNet: Criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 603–612, 2019.
DOI
[62]
Mei, J.; Cheng, M. M.; Xu, G.; Wan, L. R.; Zhang, H. SANet: A slice-aware network for pulmonary nodule detection. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 44, No. 8, 4374–4387, 2022.
[63]
Bello, I.; Zoph, B.; Le, Q.; Vaswani, A.; Shlens, J. Attention augmented convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 3285–3294, 2019.
DOI
[64]
Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-alone self-attention in vision models. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 7, 68–80, 2019.
[65]
Zhao, H. S.; Jia, J. Y.; Koltun, V. Exploring self-attention for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10073–10082, 2020.
DOI
[66]
Wang, H.; Zhu, Y.; Green, B.; Adam, H.; Yuille, A.; Chen, L. C. Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation. In: Computer Vision – ECCV 2020. Lecture Notes in Computer Science, Vol. 12349. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 108–126, 2020.
DOI
[67]
Wang, Y.; Peng, J. J.; Wang, H. B.; Wang, M. Progressive learning with multi-scale attention network for cross-domain vehicle re-identification. Science China Information Sciences Vol. 65, No. 6, Article No. 160103, 2022.
[68]
Guo, M. H.; Xu, T. X.; Liu, J. J.; Liu, Z. N.; Jiang, P. T.; Mu, T. J.; Zhang, S. H.; Martin, R. R.; Cheng, M. M.; Hu, S. M. Attention mechanisms in computer vision: A survey. Computational Visual Media Vol. 8, No. 3, 331–368, 2022.
[69]
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is worth 16×16 words: Transformers for image recognition at scale. In: Proceedings of the 9th International Conference on Learning Representations, 2021.
[70]
Xu, Y. F.; Wei, H. P.; Lin, M. X.; Deng, Y. Y.; Sheng, K. K.; Zhang, M. D.; Tang, F.; Dong, W.; Huang, F.; Xu, C. Transformers in computational visual media: A survey. Computational Visual Media Vol. 8, No. 1, 33–62, 2022.
[71]
Taghanaki, S. A.; Zheng, Y. F.; Kevin Zhou, S.; Georgescu, B.; Sharma, P.; Xu, D. G.; Comaniciu, D.; Hamarneh, G. Combo loss: Handling input and output imbalance in multi-organ segmentation. Computerized Medical Imaging and Graphics Vol. 75, 24–33, 2019.
[72]
Lin, T. Y.; Goyal, P.; Girshick, R.; He, K. M.; Dollár, P. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, 2999–3007, 2017.
DOI
[73]
Milletari, F.; Navab, N.; Ahmadi, S. A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 4th International Conference on 3D Vision, 565–571, 2016.
DOI
[74]
Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition, 7132–7141, 2018.
DOI
[75]
Chollet, F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1800–1807, 2017.
DOI
[76]
Xie, S. N.; Girshick, R.; Dollár, P.; Tu, Z. W.; He, K. M. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5987–5995, 2017.
DOI
[77]
Wu, Y. X.; He, K. M. Group normalization. In: Computer Vision – ECCV 2018. Lecture Notes in Computer Science, Vol. 11217. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 3–19, 2018.
[78]
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 721, 8026–8037, 2019.
[79]
Wang, J. D.; Sun, K.; Cheng, T. H.; Jiang, B. R.; Deng, C. R.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 43, No. 10, 3349–3364, 2021.
[80]
Gupta, R.; Shah, M. RescueNet: Joint building segmentation and damage assessment from satellite imagery. In: Proceedings of the 25th International Conference on Pattern Recognition, 4405–4411, 2021.
DOI
[81]
Deng, J.; Dong, W.; Socher, R.; Li, L. J.; Kai, L.; Li, F. F. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 248–255, 2009.
DOI
[82]
Chen, Y.; Li, J.; Xiao, H.; Jin, X.; Yan, S.; Feng, J. Dual path networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 4470–4478, 2017.
[83]
Guo, M. H.; Lu, C. Z.; Liu, Z. N.; Cheng, M. M.; Hu, S. M. Visual attention network. arXiv preprint arXiv:2202.09741, 2022.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 April 2022
Accepted: 18 November 2022
Published: 08 March 2023
Issue date: September 2023

Copyright

© The Author(s) 2023.

Acknowledgements

This work is supported by the National Key R&D Program of China (Grant No. 2018AAA0100400), Fundamental Research Funds for the Central Universities (Nankai University, Grant No. 63223050), and National Natural Science Foundation of China (Grant No. 62176130).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Return