AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unsupervised image translation with distributional semantics awareness

State Key Lab of CAD&CG, Zhejiang University, Hangzhou310058, China
School of Computing, University of Leeds, Leeds, UK
School of Computing, Clemson University, Clemson, USA
Show Author Information

Graphical Abstract

Abstract

Unsupervised image translation (UIT) studies the mapping between two image domains. Since such mappings are under-constrained, existing research has pursued various desirable properties such as distributional matching or two-way consistency. In this paper, we re-examine UIT from a new perspective: distributional semantics consistency, based on the observation that data variations contain semantics, e.g., shoes varying in colors. Further, the semantics can be multi-dimensional, e.g., shoes also varying in style, functionality, etc. Given two image domains, matching these semantic dimensions during UIT will produce mappings with explicable correspondences, which has not been investigated previously. We propose distributional semantics mapping (DSM), the first UIT method which explicitly matches semantics between two domains. We show that distributional semantics has been rarely considered within and beyond UIT, even though it is a common problem in deep learning. We evaluate DSM on several benchmark datasets, demonstrating its general ability to capture distributional semantics. Extensive comparisons show that DSM not only produces explicable mappings, but also improves image quality in general.

References

[1]
Liu, M. Y.; Breuel, T.; Kautz, J. Unsupervised image-to-image translation networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 700–708, 2017.
[2]
Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, 2242–2251, 2017.
[3]
Benaim, S.; Wolf, L. One-sided unsupervised domain mapping. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 752–762, 2017.
[4]
Tomei, M.; Cornia, M.; Baraldi, L.; Cucchiara, R. Art2Real: Unfolding the reality of artworks via semantically-aware image-to-image translation. In:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5842–5852, 2019.
[5]
Almahairi, A.; Rajeswar, S.; Sordoni, A.; Bachman, P.; Courville, A. C. Augmented CycleGAN: Learning many-to-many mappings from unpaired data. In: Proceedings of the 35th International Conference on Machine Learning, 195–204, 2018.
[6]
Härkönen, E.; Hertzmann, A.; Lehtinen, J.; Paris, S. GANSpace: Discovering interpretable GAN controls. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, Article No. 825, 9841–9850, 2020.
[7]
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Communications of the ACM Vol. 63, No. 11, 139–144, 2020.
[8]
Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, Vol. 70, 214–223, 2017.
[9]
Karras, T.; Laine, S.; Aila, T. M. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4396–4405, 2020.
[10]
Isola, P.; Zhu, J. Y.; Zhou, T. H.; Efros, A. A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5967–5976, 2017.
[11]
Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Globally and locally consistent image completion. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 107, 2017.
[12]
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A. P.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 105–114, 2017.
[13]
Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
[14]
Kim, T.; Cha, M.; Kim, H.; Lee, J. K.; Kim, J. Learning to discover cross-domain relations with generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, Vol. 70, 1857–1865, 2017.
[15]
Yi, Z.; Zhang, H.; Tan, P.; Gong, M. DualGAN: Unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE International Conference on Computer Vision, 2868–2876, 2017.
[16]
Chen, S. Y.; Su, W. C.; Gao, L.; Xia, S. H.; Fu, H. B. DeepFaceDrawing: Deep generation of face images from sketches. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 72, 2020.
[17]
Chen, S. Y.; Liu, F. L.; Lai, Y. K.; Rosin, P. L.; Li, C. P.; Fu, H. B.; Gao, L. DeepFaceEditing: Deep face generation and editing with disentangled geometry and appearance control. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 90, 2021.
[18]
Lee, C. H.; Liu, Z. W.; Wu, L. Y.; Luo, P. MaskGAN: Towards diverse and interactivefacial image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5548–5557, 2020.
[19]
Mao, X. D.; Li, Q.; Xie, H. R.; Lau, R. Y. K.; Wang, Z.; Smolley, S. P. Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, 2813–2821, 2017.
[20]
Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8798–8807, 2018.
[21]
Lu, G. S.; Zhou, Z. M.; Song, Y. X.; Ren, K.; Yu, Y. Guiding the one-to-one mapping in CycleGAN via optimal transport. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 33, No. 1, 4432–4439, 2019.
[22]
Lu, G.; Zhou, Z.; Shen, J.; Chen, C.; Zhang, W.; Yu, Y. Large-scale optimal transport via adversarial training with cycle-consistency. arXiv preprint arXiv:2003.06635, 2020.
[23]
Huang, X.; Liu, M. Y.; Belongie, S.; Kautz, J. Multimodal unsupervised image-to-image translation. In: Computer Vision – ECCV 2018. Lecture Notes in Computer Science, Vol. 11207. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 179–196, 2018.
[24]
Lee, H. Y.; Tseng, H. Y.; Huang, J. B.; Singh, M.; Yang, M. H. Diverse image-to-image translation via disentangled representations. In: Computer Vision – ECCV 2018. Lecture Notes in Computer Science, Vol. 11205. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 36–52, 2018.
[25]
Alami Mejjati, Y.; Richardt, C.; Tompkin, J.; Cosker, D.; Kim, K. I. Unsupervised attention-guided image-to-image translation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, 3697–3707, 2018.
[26]
Kim, J.; Kim, M.; Kang, H.; Lee, K. U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. arXiv preprint arXiv:1907.10830, 2019.
[27]
Choi, Y.; Choi, M.; Kim, M.; Ha, J. W.; Kim, S.; Choo, J. StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8789–8797, 2018.
[28]
Lee, H. Y.; Tseng, H. Y.; Mao, Q.; Huang, J. B.; Lu, Y. D.; Singh, M.; Yang, M. DRIT++: Diverse image-to-image translation via disentangled representations. International Journal of Computer Vision Vol. 128, Nos. 10–11, 2402–2417, 2020.
[29]
Choi, Y.; Uh, Y.; Yoo, J.; Ha, J. W. StarGAN v2: Diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8185–8194, 2020.
[30]
Liu, M. Y.; Huang, X.; Mallya, A.; Karras, T.; Aila, T. M.; Lehtinen, J.; Kautz, J. Few-shot unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 10550–10559, 2019.
[31]
Fu, H.; Gong, M. M.; Wang, C. H.; Batmanghelich, K.; Zhang, K.; Tao, D. C. Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2422–2431, 2019.
[32]
Kingma, D. P.; Welling, M. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114, 2013.
[33]
Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[34]
Yu, A.; Grauman, K. Fine-grained visual comparisons with local learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 192–199, 2014.
[35]
Zhu, J. Y.; Krähenbühl, P.; Shechtman, E.; Efros, A. A. Generative visual manipulation on the natural image manifold. In: Computer Vision – ECCV 2016. Lecture Notes in Computer Science, Vol. 9909. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 597–613, 2016.
[36]
LeCun, Y.; Cortes, C.; Burges, C. J. C. THE MNIST DATABASE of handwritten digits. 1998. Available at http://yann.lecun.com/exdb/mnist/.
[37]
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 6629–6640, 2017.
[38]
Ulyanov, D.; Vedaldi, A.; Lempitsky, V. S. Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.
[39]
Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, Vol. 37, 448–456, 2015.
[40]
Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.
Computational Visual Media
Pages 619-631
Cite this article:
Peng Z, Wang H, Weng Y, et al. Unsupervised image translation with distributional semantics awareness. Computational Visual Media, 2023, 9(3): 619-631. https://doi.org/10.1007/s41095-022-0295-3

744

Views

32

Downloads

3

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 01 March 2022
Accepted: 15 May 2022
Published: 18 April 2023
© The Author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Return