References(60)
[1]
Hanna, J. L. The Performer-Audience Connection: Emotion to Metaphor in Dance and Society. University of Texas Press, 1983.
[2]
Aristidou, A.; Shamir, A.; Chrysanthou, Y. Digital dance ethnography. Journal on Computing and Cultural Heritage Vol. 12, No. 4, Article No. 29, 2020.
[3]
Li, R. L.; Yang, S.; Ross, D. A.; Kanazawa, A. AI choreographer: Music conditioned 3D dance generation with AIST. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 13381–13392, 2021.
[4]
Chen, K.; Tan, Z.; Lei, J.; Zhang, S. H.; Guo, Y. C.; Zhang, W.; Hu, S. M. ChoreoMaster: Choreography-oriented music-driven dance synthesis. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 145, 2021.
[5]
Butterworth, J. Dance Studies: The Basics. Routledge Press, 2011.
[6]
Holden, D.; Saito, J.; Komura, T.; Joyce, T. Learning motion manifolds with convolutional autoencoders. In: Proceedings of the SIGGRAPH Asia 2015 Technical Briefs, Article No. 18, 2015.
[7]
Holden, D.; Saito, J.; Komura, T. A deep learning framework for character motion synthesis and editing. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 138, 2016.
[8]
Aberman, K.; Weng, Y. J.; Lischinski, D.; Cohen-Or, D.; Chen, B. Q. Unpaired motion style transfer from video to animation. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 64, 2020.
[9]
Dong, Y. Z.; Aristidou, A.; Shamir, A.; Mahler, M.; Jain, E. Adult2child: Motion style transfer using CycleGANs. In: Proceedings of the 13th ACM SIGGRAPH Conference on Motion, Interaction and Games, Article No. 13, 2020.
[10]
Wen, Y. H.; Yang, Z. P.; Fu, H. B.; Gao, L.; Sun, Y. N.; Liu, Y. J. Autoregressive stylized motion synthesis with generative flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13607–13607, 2021.
[11]
Koutedakis, Y.; Craig Sharp, N. C. The Fit and Healthy Dancer. Wiley Press, 1999.
[12]
Krasnow, D.; Chatfield, S. J. Development of the “performance competence evaluation measure”: Assessing qualitative aspects of dance performance. Journal of Dance Medicine & Science Vol. 13, No. 4, 101–107, 2009.
[13]
Neave, N.; McCarty, K.; Freynik, J.; Caplan, N.; Hönekopp, J.; Fink, B. Male dance moves that catch a woman’s eye. Biology Letters Vol. 7, No. 2, 221–224, 2011.
[14]
Torrents, C.; Castañer, M.; Jofre, T.; Morey, G.; Reverter, F. Kinematic parameters that influence the aesthetic perception of beauty in contemporary dance. Perception Vol. 42, No. 4, 447–458, 2013.
[15]
Park, Y. S. Correlation analysis between dance experience and smoothness of dance movement by using three jerk-based quantitative methods. Korean Journal of Sport Biomechanics Vol. 26, No. 1, 1–9, 2016.
[16]
Alexiadis, D. S.; Kelly, P.; Daras, P.; O’Connor, N. E.; Boubekeur, T.; Ben Moussa, M. Evaluating a dancer’s performance using kinect-based skeleton tracking. In: Proceedings of the 19th ACM International Conference on Multimedia, 659–662, 2011.
[17]
Raheb, K. E.; Stergiou, M.; Katifori, A.; Ioannidis, Y. Dance interactive learning systems: A study on interaction workflow and teaching approaches. ACM Computing Surveys Vol. 52, No. 3, Article No. 50, 2019.
[18]
Chen, H. Y.; Cheng, Y. H.; Lo, A. Improve dancing skills with motion capture systems: Case study of a Taiwanese high school dance class. Research in Dance Education , 2021.
[19]
Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T. A virtual reality dance training system using motion capture technology. IEEE Transactions on Learning Technologies Vol. 4, No. 2, 187–195, 2011.
[20]
Aristidou, A.; Stavrakis, E.; Charalambous, P.; Chrysanthou, Y.; Himona, S. L. Folk dance evaluation using laban movement analysis. Journal on Computing and Cultural Heritage Vol. 8, No. 4, Article No. 20, 2015.
[21]
Laban, R. The Mastery of Movement, 4th edn. Dance Books Ltd., 2011.
[22]
Tenenbaum, J.; Freeman, W. Separating style and content. In: Proceedings of the Advances in Neural Information Processing Systems, 662–668, 1996.
[23]
Aristidou, A.; Zeng, Q.; Stavrakis, E.; Yin, K. K.; Cohen-Or, D.; Chrysanthou, Y.; Chen, B. Emotion control of unstructured dance movements. In: Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, Article No. 9, 2017.
[24]
Brand, M.; Hertzmann, A. Style machines. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 183–192, 2000.
[25]
Hsu, E.; Pulli, K.; Popović J. Style translation for human motion. ACM Transactions on Graphics Vol. 24, No. 3, 1082–1089, 2005.
[26]
Xia, S. H.; Wang, C. Y.; Chai, J. X.; Hodgins, J. Realtime style transfer for unlabeled heterogeneous human motion. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 119, 2015.
[27]
Mason, I.; Starke, S.; Zhang, H.; Bilen, H.; Komura, T. Few-shot learning of homogeneous human locomotion styles. Computer Graphics Forum Vol. 37, No. 7, 143–153, 2018.
[28]
Smith, H. J.; Cao, C.; Neff, M.; Wang, Y. Y. Efficient neural networks for real-time motion style transfer. Proceedings of the ACM on Computer Graphics and Interactive Techniques Vol. 2, No. 2, Article No. 13, 2019.
[29]
Du, H.; Herrmann, E.; Sprenger, J.; Cheema, N.; Hosseini, S.; Fischer, K.; Slusallek, P. Stylisticlocomotion modeling with conditional variational autoencoder. In: Proceedings of the 12th ACM SIGGRAPH Conference on Motion, Interaction and Games, Article No. 32, 2019.
[30]
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P. A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research Vol. 11, 3371–3408, 2010.
[31]
Gatys, L.; Ecker, A.; Bethge, M. A neural algorithm of artistic style. Journal of Vision Vol. 16, No. 12, 326, 2016.
[32]
Huang, X.; Belongie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, 1510–1519, 2017.
[33]
Arikan, O.; Forsyth, D. A. Interactive motion generation from examples. ACM Transactions on Graphics Vol. 21, No. 3, 483–490, 2002.
[34]
Kim, T. H.; Park, S. I.; Shin, S. Y. Rhythmic-motion synthesis based on motion-beat analysis. ACM Transactions on Graphics Vol. 22, No. 3, 392–401, 2003.
[35]
Lee, H. C.; Lee, I. K. Automatic synchronization of background music and motion in computer animation. Computer Graphics Forum Vol. 24, No. 3, 353–361, 2005.
[36]
Shiratori, T.; Nakazawa, A.; Ikeuchi, K. Dancing-to-music character animation. Computer Graphics Forum Vol. 25, No. 3, 449–458, 2006.
[37]
Tang, T. R.; Jia, J.; Mao, H. Y. Dance with melody: An LSTM-autoencoder approach to music-oriented dance synthesis. In: Proceedings of the 26th ACM International Conference on Multimedia, 1598–1606, 2018.
[38]
Lee, H. Y.; Yang, X.; Liu, M. Y.; Wang, T. C.; Lu, Y. D.; Yang, M. H.; Kautz, J. Dancing to music. In: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019.
[39]
Tsuchida, S.; Fukayama, S.; Hamasaki, M.; Goto, M. AIST dance video database: Multi-genre, multi-dancer, and multi-camera database for dance information processing. In: Proceedings of the 20th International Society for Music Information Retrieval Conference, 501–510, 2019.
[40]
Zhuang, W. L.; Wang, C. Y.; Chai, J. X.; Wang, Y. G.; Shao, M.; Xia, S. Y. Music2Dance: DanceNet for music-driven dance generation. ACM Transactions on Multimedia Computing, Communications, and Applications Vol. 18, No. 2, Article No. 65, 2022.
[41]
Aristidou, A.; Yiannakidis, A.; Aberman, K.; Cohen-Or, D.; Shamir, A.; Chrysanthou, Y. Rhythm is a dancer: Music-driven motion synthesis with global structure. IEEE Transactions on Visualization and Computer Graphics , 2022.
[42]
Tadamura, K.; Nakamae, E. Synchronizing computer graphics animation and audio. IEEE MultiMedia Vol. 5, No. 4, 63–73, 1998.
[43]
Cardle, M.; Barthe, L.; Brooks, S.; Robinson, P. Music-driven motion editing: Local motion transformations guided by music analysis. In: Proceedings of the 20th Eurographics UK Conference, 38–44, 2002.
[44]
Laichuthai, A.; Kanongchaiyo, P. Synchronization between motion and music using motion graph. In: Proceedings of the 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology, 496–499, 2011.
[45]
Davis, A.; Agrawala, M. Visual rhythm and beat. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 122, 2018.
[46]
Bellini, R.; Kleiman, Y.; Cohen-Or, D. Dance to the beat: Synchronizing motion to audio. Computational Visual Media Vol. 4, No. 3, 197–208, 2018.
[47]
Chung, J. S.; Zisserman, A. Out of time: Automated lip sync in the wild. In: Computer Vision – ACCV 2016 Workshops. Lecture Notes in Computer Science, Vol. 10117. Chen, C. S.; Lu, J.; Ma, K. K. Eds. Springer Cham, 251–263, 2017.
[48]
Halperin, T.; Ephrat, A.; Peleg, S. Dynamic temporal alignment of speech to lips. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 3980–3984, 2019.
[49]
Wang, J. R.; Fang, Z. Y.; Zhao, H. AlignNet: A unifying approach to audio-visual alignment. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 3298–3306, 2020.
[50]
Phillips, G. M. Interpolation and Approximation by Polynomials. New York: Springer, 2003.
[51]
Holden, D.; Komura, T.; Saito, J. Phase-func-tioned neural networks for character control. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 42, 2017.
[52]
Aristidou, A.; Lasenby, J.; Chrysanthou, Y.; Shamir, A. Inverse kinematics techniques in computer graphics: A survey. Computer Graphics Forum Vol. 37, No. 6, 35–58, 2018.
[53]
McFee, B.; Raffel, C.; Liang, D. W.; Ellis, D.; McVicar, M.; Battenberg, E.; Nieto, O. Librosa: Audio and music signal analysis in python. In: Proceedings of the 14th Python in Science Conference, 18–24, 2015.
[54]
Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEETransactions on Acoustics, Speech, and Signal Processing Vol. 26, No. 1, 43–49, 1978.
[55]
Rabiner, L.; Juang, B. H. Fundamentals of Speech Recognition. Prentice-Hall, Inc., 1993,
[56]
Daugman, J. G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A Vol. 2, No. 7, 1160–1169, 1985.
[57]
Dowson, D. C.; Landau, B. V. The Fréchet distance between multivariate normal distributions. Journal of Multivariate Analysis Vol. 12, No. 3, 450–455, 1982.
[58]
Aristidou, A.; Cohen-Or, D.; Hodgins, J. K.; Chrysanthou, Y.; Shamir, A. Deep motifs and motion signatures. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 187, 2018.
[59]
Zhou, Y.; Barnes, C.; Lu, J. W.; Yang, J. M.; Li, H. On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 5738–5746, 2019.
[60]
Andreou, N.; Aristidou, A.; Chrysanthou, Y. Pose representations for deep skeletal animation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2022.