Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Regional facial image synthesis conditioned on a semantic mask has achieved great attention in the field of computational visual media. However, the appearances of different regions may be inconsistent with each other after performing regional editing. In this paper, we focus on harmonized regional style transfer for facial images. A multi-scale encoder is proposed for accurate style code extraction. The key part of our work is a multi-region style attention module. It adapts multiple regional style embeddings from a reference image to a target image, to generate a harmonious result. We also propose style mapping networks for multi-modal style synthesis. We further employ an invertible flow model which can serve as mapping network to fine-tune the style code by inverting the code to latent space. Experiments on three widely used face datasets were used to evaluate our model by transferring regional facial appearance between datasets. The results show that our model can reliably perform style transfer and multi-modal manipulation, generating output comparable to the state of the art.
7476
Views
50
Downloads
6
Crossref
5
Web of Science
4
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.