Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We present a lightweight and efficient semi-supervised video object segmentation network based on the space-time memory framework. To some extent, our method solves the two difficulties encountered in traditional video object segmentation: one is that the single frame calculation time is too long, and the other is that the current frame’s segmentation should use more information from past frames. The algorithm uses a global context (GC) module to achieve high-performance, real-time segmentation. The GC module can effectively integrate multi-frame image information without increased memory and can process each frame in real time. Moreover, the prediction mask of the previous frame is helpful for the segmentation of the current frame, so we input it into a spatial constraint module (SCM), which constrains the areas of segments in the current frame. The SCM effectively alleviates mismatching of similar targets yet consumes few additional resources. We added a refinement module to the decoder to improve boundary segmentation. Our model achieves state-of-the-art results on various datasets, scoring
8278
Views
85
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.