References(108)
[1]
Wang, S. Z.; Liao, W. J.; Surman, P.; Tu, Z. G.; Zheng, Y. J.; Yuan, J. S. Salience guided depth calibration for perceptually optimized compressive light field 3D display. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2031-2040, 2018.
[2]
Cheng, M. M.; Zhang, G. X.; Mitra, N. J.; Huang, X. L.; Hu, S. M. Global contrast based salient region detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 409-416, 2011.
[3]
Borji, A.; Cheng, M. M.; Jiang, H. Z.; Li, J. Salient object detection: A benchmark. IEEE Transactions on Image Processing Vol. 24, No. 12, 5706-5722, 2015.
[4]
Borji, A.; Cheng, M. M.; Hou, Q. B.; Jiang, H. Z.; Li, J. Salient object detection: A survey. Computational Visual Media Vol. 5, No. 2, 117-150, 2019.
[5]
Li, N. Y.; Ye, J. W.; Ji, Y.; Ling, H. B.; Yu, J. Y. Saliency detection on light field. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2806-2813, 2014.
[6]
Li, N. Y.; Ye, J. W.; Ji, Y.; Ling, H. B.; Yu, J. Y. Saliency detection on light field. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 39, No. 8, 1605-1616, 2017.
[7]
Ren, Z. X.; Gao, S. H.; Chia, L. T.; Tsang, I. W. H. Region-based saliency detection and its application in object recognition. IEEE Transactions on Circuits and Systems for Video Technology Vol. 24, No. 5, 769-779, 2014.
[8]
Zhang, D.; Meng, D.; Zhao, L.; Han, J. Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 3538-3544, 2016.
[9]
Rutishauser, U.; Walther, D.; Koch, C.; Perona, P. Is bottom-up attention useful for object recognition? In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, II, 2004.
[10]
Moosmann, F.; Larlus, D.; Jurie, F. Learning saliency maps for object categorization. In: Proceedings of the ECCV’06 Workshop on the Representation and Use of Prior Knowledge in Vision, 2006.
[11]
Cheng, M. M.; Liu, Y.; Lin, W. Y.; Zhang, Z. M.; Rosin, P. L.; Torr, P. H. S. BING: Binarized normed gradients for objectness estimation at 300fps. Computational Visual Media Vol. 5, No. 1, 3-20, 2019.
[12]
Wei, Y. C.; Feng, J. S.; Liang, X. D.; Cheng, M. M.; Zhao, Y.; Yan, S. C. Object region mining with adversarial erasing: A simple classification to semantic segmentation approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6488-6496, 2017.
[13]
Wei, Y. C.; Liang, X. D.; Chen, Y. P.; Shen, X. H.; Cheng, M. M.; Feng, J. S.; Zhao, Y.; Yan, S. STC: A simple to complex framework for weakly-supervised semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 39, No. 11, 2314-2320, 2017.
[14]
Wang, X.; You, S. D.; Li, X.; Ma, H. M. Weakly-supervised semantic segmentation by iteratively mining common object features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1354-1362, 2018.
[15]
Wang, W.; Shen, J.; Yang, R.; Porikli, F. Saliency-aware video object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 1, 20-33, 2018.
[16]
Song, H.; Wang, W.; Zhao, S.; Shen, J.; Lam, K.-M. Pyramid dilated deeper ConvLSTM for video salient object detection. In: Computer Vision - ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, Vol. 11215. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 744-760, 2018.
[17]
Itti, L. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing Vol. 13, No. 10, 1304-1318, 2004.
[18]
Ma, Y. F.; Hua, X. S.; Lu, L.; Zhang, H. J. A generic framework of user attention model and its application in video summarization. IEEE Transactions on Multimedia Vol. 7, No. 5, 907-919, 2005.
[19]
Ma, Y. F.; Lu, L.; Zhang, H. J.; Li, M. J. A user attention model for video summarization. In: Proceedings of the 10th ACM International Conference on Multimedia, 533-542, 2002.
[20]
Ouerhani, N.; Bracamonte, J.; Hugli, H.; Ansorge, M.; Pellandini, F. Adaptive color image compression based on visual attention. In: Proceedings of the 11th International Conference on Image Analysis and Processing, 416-421, 2001.
[21]
Han, J. G.; Pauwels, E. J.; de Zeeuw, P. Fast saliency-aware multi-modality image fusion. Neurocomputing Vol. 111, 70-80, 2013.
[22]
Jin, S.; Ling, H. B. Scale and object aware image retargeting for thumbnail browsing. In: Proceedings of the International Conference on Computer Vision, 1511-1518, 2011.
[23]
Sugano, Y.; Matsushita, Y.; Sato, Y. Calibration-free gaze sensing using saliency maps. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2667-2674, 2010.
[24]
Borji, A.; Itti, L. Defending Yarbus: Eye movements reveal observers’ task. Journal of Vision Vol. 14, No. 3, 29, 2014.
[25]
Fu, K. R.; Zhao, Q. J.; Yu-Hua Gu, I.; Yang, J. Deepside: A general deep framework for salient object detection. Neurocomputing Vol. 356, 69-82, 2019.
[26]
Wang, W. G.; Shen, J. B.; Shao, L.; Porikli, F. Correspondence driven saliency transfer. IEEE Transactions on Image Processing Vol. 25, No. 11, 5025-5034, 2016.
[27]
Zhang, P. P.; Wang, D.; Lu, H. C.; Wang, H. Y.; Ruan, X. Amulet: Aggregating multi-level convolutional features for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, 202-211, 2017.
[28]
Feng, M. Y.; Lu, H. C.; Ding, E. R. Attentive feedback network for boundary-aware salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1623-1632, 2019.
[29]
Zhang, P. P.; Wang, D.; Lu, H. C.; Wang, H. Y.; Yin, B. C. Learning uncertain convolutional features for accurate saliency detection. In: Proceedings of the IEEE International Conference on Computer Vision, 212-221, 2017.
[30]
Zhang, J.; Wang, M.; Gao, J.; Wang, Y.; Zhang, X.; Wu, X. Saliency detection with a deeper investigation of light field. In: Proceedings of the 24th International Conference on Artificial Intelligence, 2212-2218, 2015.
[31]
Zhang, M.; Li, J.; Ji, W.; Piao, Y.; Lu, H. Memory-oriented decoder for light field salient object detection. In: Proceedings of the 33rd Conference on Neural Information Processing Systems, 898-908, 2019.
[32]
Piao, Y. R.; Rong, Z. K.; Zhang, M.; Lu, H. C. Exploit and replace: An asymmetrical two-stream architecture for versatile light field saliency detection. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, No. 7, 11865-11873, 2020.
[33]
Fu, K. R.; Fan, D. P.; Ji, G. P.; Zhao, Q. J. JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3049-3059, 2020.
[34]
Fu, K. R.; Fan, D. P.; Ji, G. P.; Zhao, Q. J.; Shen, J. B.; Zhu, C. Siamese network for RGB-D salient object detection and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021.
[35]
Fan, D. P.; Zhai, Y.; Borji, A.; Yang, J.; Shao, L. BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network. In: Computer Vision - ECCV 2020. Lecture Notes in Computer Science, Vol. 12357. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 275-292, 2020.
[36]
Zhang, M.; Fei, S. X.; Liu, J.; Xu, S.; Piao, Y. R.; Lu, H. C. Asymmetric two-stream architecture for accurate RGB-D saliency detection. In: Computer Vision - ECCV 2020. Lecture Notes in Computer Science, Vol. 12373. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 374-390, 2020.
[37]
Gershun, A. The light field. Studies in Applied Mathematics Vol. 18, Nos. 1-4, 51-151, 1939.
[38]
Jeon, H. G.; Park, J.; Choe, G.; Park, J.; Bok, Y.; Tai, Y. W.; Kweon, I.-S. Accurate depth map estimation from a lenslet light field camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1547-1555, 2015.
[39]
Tao, M. W.; Hadap, S.; Malik, J.; Ramamoorthi, R. Depth from combining defocus and correspondence using light-field cameras. In: Proceedings of the IEEE International Conference on Computer Vision, 673-680, 2013.
[40]
Tao, M. W.; Srinivasan, P. P.; Malik, J.; Rusinkiewicz, S.; Ramamoorthi, R. Depth from shading, defocus, and correspondence using light-field angular coherence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1940-1948, 2015.
[41]
Wang, T. C.; Efros, A. A.; Ramamoorthi, R. Occlusion-aware depth estimation using light-field cameras. In: Proceedings of the IEEE International Conference on Computer Vision, 3487-3495, 2015.
[42]
Ng, R.; Levoy, M.; Brédif, M.; Duval, G.; Horowitz, M.; Hanrahan, P. Light field photography with a hand-held plenopic camera. Stanford Tech Report CTSR 2005-02, 2005.
[43]
Piao, Y.; Zhang, Y.; Zhang, M.; Ji, X. Dynamic fusion network for light field depth estimation. arXiv preprint arXiv:2104.05969, 2021.
[44]
Piao, Y.; Ji, X.; Zhang, M.; Zhang, Y. Learning multi-modal information for robust light field depth estimation. arXiv preprint arXiv:2104.05971, 2021.
[45]
Piao, Y.; Rong, Z.; Zhang, M.; Li, X.; Lu, H. Deep light-field-driven saliency detection from a single view. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, 904-911, 2019.
[46]
Jiang, P.; Ling, H. B.; Yu, J. Y.; Peng, J. L. Salient region detection by UFO: Uniqueness, focusness and objectness. In: Proceedings of the IEEE International Conference on Computer Vision, 1976-1983, 2013.
[47]
Buehler, C.; Bosse, M.; McMillan, L.; Gortler, S.; Cohen, M. Unstructured lumigraph rendering. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 425-432, 2001.
[48]
Zhang, X. D.; Wang, Y.; Zhang, J.; Hu, L. M.; Wang, M. Light field saliency vs. 2D saliency: A comparative study. Neurocomputing Vol. 166, 389-396, 2015.
[49]
Zhou, T.; Fan, D. P.; Cheng, M. M.; Shen, J. B.; Shao, L. RGB-D salient object detection: A survey.Computational Visual Media Vol. 7, No. 1, 37-69, 2021.
[50]
Li, N. Y.; Sun, B. L.; Yu, J. Y. A weighted sparse coding framework for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5216-5223, 2015.
[51]
Sheng, H.; Zhang, S.; Liu, X. Y.; Xiong, Z. Relative location for light field saliency detection. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1631-1635, 2016.
[52]
Wang, A. Z.; Wang, M. H.; Li, X. Y.; Mi, Z. T.; Zhou, H. A two-stage Bayesian integration framework for salient object detection on light field. Neural Processing Letters Vol. 46, No. 3, 1083-1094, 2017.
[53]
Zhang, J.; Wang, M.; Lin, L.; Yang, X.; Gao, J.; Rui, Y. Saliency detection on light field. ACM Transactions on Multimedia Computing, Communications, and Applications Vol. 13, No. 3, Article No. 32, 2017.
[54]
Wang, X.; Dong, Y. Y.; Zhang, Q.; Wang, Q. Region-based depth feature descriptor for saliency detection on light field. Multimedia Tools and Applications Vol. 80, No. 11, 16329-16346, 2021.
[55]
Piao, Y. R.; Li, X.; Zhang, M.; Yu, J. Y.; Lu, H. C. Saliency detection via depth-induced cellular automata on light field. IEEE Transactions on Image Processing Vol. 29, 1879-1889, 2020.
[56]
Wang, H. Q.; Yan, B.; Wang, X. Z.; Zhang, Y. B.; Yang, Y. Accurate saliency detection based on depth feature of 3D images. Multimedia Tools and Applications Vol. 77, No. 12, 14655-14672, 2018.
[57]
Wang, T. T.; Piao, Y. R.; Lu, H. C.; Li, X.; Zhang, L. H. Deep learning for light field saliency detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 8837-8847, 2019.
[58]
Zhang, M.; Ji, W.; Piao, Y. R.; Li, J. J.; Zhang, Y.; Xu, S.; Lu, H. LFNet: Light field fusion network for salient object detection. IEEE Transactions on Image Processing Vol. 29, 6276-6287, 2020.
[59]
Zhang, J.; Liu, Y. M.; Zhang, S. P.; Poppe, R.; Wang, M. Light field saliency detection with deep convolutional networks. IEEE Transactions on Image Processing Vol. 29, 4421-4434, 2020.
[60]
Zhang, Q. D.; Wang, S. Q.; Wang, X.; Sun, Z. H.; Kwong, S.; Jiang, J. M. A multi-task collaborative network for light field salient object detection. IEEE Transactions on Circuits and Systems for Video Technology Vol. 31, No. 5, 1849-1861, 2021.
[61]
Zhang, M.; Ren, W. S.; Piao, Y. R.; Rong, Z. K.; Lu, H. C. Select, supplement and focus for RGB-D saliency detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3469-3478, 2020.
[62]
Zhang, J.; Fan, D. P.; Dai, Y. C.; Anwar, S.; Saleh, F. S.; Zhang, T.; Barnes, N. UC-net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8579-8588, 2020.
[63]
Fan, D. P.; Lin, Z.; Zhang, Z.; Zhu, M. L.; Cheng, M. M. Rethinking RGB-D salient object detection: Models, data sets, and large-scale benchmarks. IEEE Transactions on Neural Networks and Learning Systems Vol. 32, No. 5, 2075-2089, 2021.
[64]
Liu, N.; Zhang, N.; Han, J. W. Learning selective self-mutual attention for RGB-D saliency detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13753-13762, 2020.
[65]
Li, C. Y.; Cong, R. M.; Piao, Y. R.; Xu, Q. Q.; Loy, C. C. RGB-D salient object detection with cross-modality modulation and selection. In: Computer Vision - ECCV 2020. Lecture Notes in Computer Science, Vol. 12353. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 225-241, 2020.
[66]
Pang, Y.; Zhang, L.; Zhao, X.; Lu, H. Hierarchical dynamic filtering network for RGB-D salient object detection. In: Computer Vision - ECCV 2020. Lecture Notes in Computer Science, Vol. 12370. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 235-252, 2020.
[67]
Adelson, E.; Bergen, J. The Plenoptic function and the elements of early vision. In: Computational Models of Visual Processing. MIT Press, 3-20, 1991.
[68]
Levoy, M.; Hanrahan, P. Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 31-42, 1996.
[69]
Agarwala, A.; Dontcheva, M.; Agrawala, M.; Drucker, S.; Colburn, A.; Curless, B.; Salesin, D.; Cohen, M. Interactive digital photomontage. ACM Transactions on Graphics Vol. 23, No. 3, 294-302, 2004.
[70]
Kuthirummal, S.; Nagahara, H.; Zhou, C. Y.; Nayar, S. K. Flexible depth of field photography. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 1, 58-71, 2011.
[71]
Zhu, W. J.; Liang, S.; Wei, Y. C.; Sun, J. Saliency optimization from robust background detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2814-2821, 2014.
[72]
He, K. M.; Sun, J.; Tang, X. O. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 12, 2341-2353, 2011.
[73]
Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 39, No. 4, 640-651, 2017.
[74]
Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, 802-810, 2015.
[75]
Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 4, 834-848, 2018.
[76]
Yang, C.; Zhang, L. H.; Lu, H. C.; Ruan, X.; Yang, M. H. Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3166-3173, 2013.
[77]
Wang, L. J.; Lu, H. C.; Wang, Y. F.; Feng, M. Y.; Wang, D.; Yin, B. C.; Ruan, X. Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3796-3805, 2017.
[78]
Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1597-1604, 2009.
[79]
Perazzi, F.; Krähenbühl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 733-740, 2012.
[80]
Fan, D. P.; Cheng, M. M.; Liu, Y.; Li, T.; Borji, A. Structure-measure: A new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, 4558-4567, 2017.
[81]
Zhao, J. X.; Cao, Y.; Fan, D. P.; Cheng, M. M.; Li, X. Y.; Zhang, L. Contrast prior and fluid pyramid integration for RGBD salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3922-3931, 2019.
[82]
Fan, D. P.; Gong, C.; Cao, Y.; Ren, B.; Cheng, M. M.; Borji, A. Enhanced-alignment measure for binary foreground map evaluation. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, 698-704, 2018.
[83]
Wu, Z.; Su, L.; Huang, Q. M. Stacked cross refinement network for edge-aware salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 7263-7272, 2019.
[84]
Qin, X. B.; Zhang, Z. C.; Huang, C. Y.; Gao, C.; Dehghan, M.; Jagersand, M. BASNet: Boundary-aware salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7471-7481, 2019.
[85]
Li, G. Y.; Liu, Z.; Ling, H. B. ICNet: Information conversion network for RGB-D based salient object detection. IEEE Transactions on Image Processing Vol. 29, 4873-4884, 2020.
[86]
Tsiami, A.; Koutras, P.; Maragos, P. STAViS: Spatio-temporal AudioVisual saliency network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4765-4775, 2020.
[87]
Fan, D. P.; Wang, W. G.; Cheng, M. M.; Shen, J. B. Shifting more attention to video salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8546-8556, 2019.
[88]
Zhao, W. D.; Zhao, F.; Wang, D.; Lu, H. C. Defocus blur detection via multi-stream bottom-top-bottom network. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 42, No. 8, 1884-1897, 2020.
[89]
Park, J.; Tai, Y. W.; Cho, D.; Kweon, I. S. A unified approach of multi-scale deep and hand-crafted features for defocus estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2760-2769, 2017.
[90]
Zeng, Y.; Zhuge, Y. Z.; Lu, H. C.; Zhang, L. H.; Qian, M. Y.; Yu, Y. Z. Multi-source weak supervision for saliency detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6067-6076, 2019.
[91]
Qian, M. Y.; Qi, J. Q.; Zhang, L. H.; Feng, M. Y.; Lu, H. C. Language-aware weak supervision for salient object detection. Pattern Recognition Vol. 96, 106955, 2019.
[92]
Chen, T. L.; Liu, S. J.; Chang, S. Y.; Cheng, Y.; Amini, L.; Wang, Z. Y. Adversarial robustness: From self-supervised pre-training to fine-tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 696-705, 2020.
[93]
Dai, A.; Diller, C.; Niessner, M. SG-NN: Sparse generative neural networks for self-supervised scene completion of RGB-D scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 846-855, 2020.
[94]
Zeng, Y.; Zhang, P. P.; Lin, Z.; Zhang, J. M.; Lu, H. C. Towards high-resolution salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 7233-7242, 2019.
[95]
Cai, Z. W.; Vasconcelos, N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 43, No. 5, 1483-1498, 2021.
[96]
Chen, K.; Pang, J. M.; Wang, J. Q.; Xiong, Y.; Li, X. X.; Sun, S. Y.; Feng, W.; Liu, Z.; Shi, J.; Ouyang, W.; et al. Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4969-4978, 2019.
[97]
Liu, S.; Qi, L.; Qin, H. F.; Shi, J. P.; Jia, J. Y. Path aggregation network for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8759-8768, 2018.
[98]
Li, G.; Xie, Y.; Lin, L.; Yu, Y. Instance-level salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 247-256, 2017.
[99]
Fan, R. C.; Cheng, M. M.; Hou, Q. B.; Mu, T. J.; Wang, J. D.; Hu, S. M. S4Net: Single stage salient-instance segmentation. Computational Visual Media Vol. 6, No. 2, 191-204, 2020.
[100]
Karpathy, A.; Li, F. F. Deep visual-semantic alignments for generating image descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 39, No. 4, 664-676, 2017.
[101]
Wei, Y.; Xia, W.; Huang, J.; Ni, B.; Dong, J.; Zhao, Y.; Yan, S. CNN: Single-label to multi-label. arXiv preprint arXiv:1406.5726, 2014.
[102]
Chen, X. L.; Gupta, A. Webly supervised learning of convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, 1431-1439, 2015.
[103]
Lai, B. S.; Gong, X. J. Saliency guided dictionary learning for weakly-supervised image parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3630-3639, 2016.
[104]
Tian, X.; Xu, K.; Yang, X.; Yin, B.; Lau, R. Weakly-supervised salient instance detection. In: Proceedings of the Conference on British Machine Vision Conference, 2020.
[105]
Borji, A. Saliency prediction in the deep learning era: Successes and limitations. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 43, No. 2, 679-700, 2021.
[106]
Borji, A.; Itti, L. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 1, 185-207, 2013.
[107]
Fan, D. P.; Ji, G. P.; Sun, G. L.; Cheng, M. M.; Shen, J. B.; Shao, L. Camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2774-2784, 2020.
[108]
Xu, Y. C.; Nagahara, H.; Shimada, A.; Taniguchi, R. I. TransCut: Transparent object segmentation from a light-field image. In: Proceedings of the IEEE International Conference on Computer Vision, 3442-3450, 2015.