Journal Home > Volume 5 , Issue 2

Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understandingof achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, wesurvey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.


menu
Abstract
Full text
Outline
About this article

Salient object detection: A survey

Show Author's information Ali Borji1Ming-Ming Cheng2( )Qibin Hou2Huaizu Jiang3Jia Li4
MarkableAI, New York, USA.
TKLNDST, College of Computer Science, Nankai University, Tianjin, China.
University of Massachusetts Amherst, Amherst, MA, USA.
State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China.

Abstract

Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understandingof achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, wesurvey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.

Keywords:

salient object detection, saliency, visual attention, regions of interest
Revised: 22 May 2019 Accepted: 27 May 2019 Published: 21 June 2019 Issue date: June 2019
References(233)
[1]
Cheng, M.; Mitra, N. J.; Huang, X.; Torr, P. H. S.; Hu, S. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 37, No. 3, 569-582, 2015.
[2]
Bylinskii, Z.; Judd, T.; Borji, A.; Itti, L.; Durand, F.; Oliva, A.; Torralba, A. MIT saliency benchmark. 2015. Available at http://saliency.mit.edu/results_mit300.html.
[3]
Bylinskii, Z.; Recasens, A.; Borji, A.; Oliva, A.; Torralba, A.; Durand, F.Where should saliency models look next? In: Computer Vision – ECCV 2016. Lecture Notes in Computer Science, Vol. 9909. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 809-824, 2016.
DOI
[4]
Spain, M.; Perona, P. Measuring and predicting object importance. International Journal of Computer Vision Vol. 91, No. 1, 59-76, 2011.
[5]
Berg, A. C.; Berg, T. L.; Daume, H.; Dodge, J.; Goyal, A.; Han, X.; Mensch, A.; Mitchell, M.; Sood, A.; Stratos, K. et al. Understanding and predicting importance in images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3562-3569, 2012.
[6]
M’t Hart, B. M.; Schmidt, H. C. E. F.; Roth, C.; Einhäuser, W. Fixations on objects in natural scenes: Dissociating importance from salience. Frontiers in Psychology Vol. 4, 455, 2013.
[7]
Isola, P.; Xiao, J.; Torralba, A.; Oliva, A. What makes an image memorable? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 145-152, 2011.
[8]
Rosenholtz, R.; Li, Y. Z.; Nakano, L. Measuring visual clutter. Journal of Vision Vol. 7, No. 2, 17, 2007.
[9]
Katti, H.; Bin, K. Y.; Chua, T. S.; Kankanhalli, M. Preattentive discrimination of interestingness in images. In: Proceedings of the IEEE International Conference on Multimedia and Expo, 1433-1436, 2008.
[10]
Gygli, M.; Grabner, H.; Riemenschneider, H.; Nater, F.; Van Gool, L. The interestingness of images. In: Proceedings of the IEEE International Conference on Computer Vision, 1633-1640, 2013.
[11]
Dhar, S.; Ordonez, V.; Berg, T. L. High level describable attributes for predicting aesthetics and interestingness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1657-1664, 2011.
[12]
Jiang, Y.-G.; Wang, Y.; Feng, R.; Xue, X.; Zheng, Y.; Yang, H. Understanding and predicting interestingness of videos. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, 2013.
[13]
Itti, L.; Baldi, P. Bayesian surprise attracts human attention. In: Proceedings of the 18th International Conference on Neural Information Processing Systems, 547-554, 2005.
[14]
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing Vol. 13, No. 4, 600-612, 2004.
[15]
Wang, Z.; Bovik, A. C.; Lu, L. Why is image quality assessment so difficult? In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, IV-3313–IV-3316, 2002.
[16]
Zhang, W.; Borji, A.; Wang, Z.; Le Callet, P.; Liu, H. T. The application of visual saliency models in objective image quality assessment: A statistical evaluation. IEEE Transactions on Neural Networks and Learning Systems Vol. 27, No. 6, 1266-1278, 2016.
[17]
Vogel, J.; Schiele, B.A semantic typicality measure for natural scene categorization. In: Pattern Recognition. Lecture Notes in Computer Science, Vol. 3175. Rasmussen, C. E.; Bülthoff, H. H.; Schölkopf, B.; Giese, M. A. Eds. Springer Berlin Heidelberg, 195-203, 2004.
DOI
[18]
Ehinger, K. A.; Xiao, J.; Torralba, A.; Oliva, A. Estimating scene typicality from human ratings and image features. In: Proceedings of the Annual Cognitive Science Conference, 2011.
[19]
Farhadi, A.; Endres, I.; Hoiem, D.; Forsyth, D. Describing objects by their attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1778-1785, 2009.
[20]
Liu, H. Y.; Jiang, S. Q.; Huang, Q. M.; Xu, C. S.; Gao, W. Region-based visual attention analysis with its application in image browsing on small displays. In: Proceedings of the 15th ACM International Conference on Multimedia, 305-308, 2007.
[21]
Mishra, A. K.; Aloimonos, Y.; Cheong, L. F.; Kassim, A. Active visual segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 34, No. 4, 639-653, 2012.
[22]
Li, Y.; Hou, X.; Koch, C.; Rehg, J. M.; Yuille, A. L. The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 280-287, 2014.
[23]
Borji, A. What is a salient object? A dataset and a baseline model for salient object detection. IEEE Transactions on Image Processing Vol. 24, No. 2, 742-756, 2015.
[24]
Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 20, No. 11, 1254-1259, 1998.
[25]
Liu, T.; Sun, J.; Zheng, N.; Tang, X.; Shum, H.-Y. Learning to detect a salient object. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2007.
[26]
Borji, A.; Sihite, D. N.; Itti, L. What stands out in a scene? A study of human explicit saliency judgment. Vision Research Vol. 91, 62-77, 2013.
[27]
Perazzi, F.; Krahenbuhl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 733-740, 2012.
[28]
Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 24, No. 5, 603-619, 2002.
[29]
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 34, No. 11, 2274-2282, 2012.
[30]
Cheng, M.-M.; Zhang, Z.; Lin, W.-Y.; Torr, P. H. S. BING: Binarized normed gradients for objectness estimation at 300fps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3286-3293, 2014.
[31]
Borji, A.; Itti, L. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 1, 185-207, 2013.
[32]
Borji, A.; Tavakoli, H. R.; Sihite, D. N.; Itti, L. Analysis of scores, datasets, and models in visual saliency prediction. In: Proceedings of the IEEE International Conference on Computer Vision, 921-928, 2013.
[33]
Hosang, J.; Benenson, R.; Dollár, P.; Schiele, B. What makes for effective detection proposals? IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 38, No. 4, 814-830, 2016.
[34]
Alexe, B.; Deselaers T.; Ferrari, V. What is an object? In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 73-80, 2010.
[35]
Siva, P.; Russell, C.; Xiang, T.; Agapito, L. Looking beyond the image: Unsupervised learning for object saliency and detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3238-3245, 2013.
[36]
Cheng, H. D.; Jiang, X. H.; Sun, Y.; Wang, J. L. Color image segmentation: Advances and prospects. Pattern Recognition Vol. 34, No. 12, 2259-2281, 2001.
[37]
Achanta, R.; Hemami, S.; Estrada, F.; Süsstrunk, S. Frequency-tuned salient region detection. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 1597-1604, 2009.
[38]
Cheng, M.-M.; Zhang, G.-X.; Mitra, N. J.; Huang, X.; Hu, S.-M. Global contrast based salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 409-416, 2011.
[39]
Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 34, No. 10, 1915-1926, 2012.
[40]
Jiang, H. Z.; Wang, J. D.; Yuan, Z. J.; Wu, Y.; Zheng, N. N.; Li, S. P. Salient object detection: A discriminative regional feature integration approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2083-2090, 2013.
[41]
Margolin, R.; Zelnik-Manor, L.; Tal, A. Saliency for image manipulation. The Visual Computer Vol. 29, No. 5, 381-392, 2013.
[42]
Yan, Q.; Xu, L.; Shi, J.; Jia, J. Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1155-1162, 2013.
[43]
Yang, C.; Zhang, L. H.; Lu, H. C. Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Processing Letters Vol. 20, No. 7, 637-640, 2013.
[44]
He, S.; Lau, R. W. H.; Liu, W.; Huang, Z.; Yang, Q. SuperCNN: A superpixelwise convolutional neural network for salient object detection. International Journal of Computer Vision Vol. 115, No. 3, 330-344, 2015.
[45]
Wang, L.; Lu, H.; Ruan, X.; Yang, M.-H. Deep networks for saliency detection via local estimation and global search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3183-3192, 2015.
[46]
Zhao, R.; Ouyang, W.; Li, H.; Wang, X. Saliency detection by multi-context deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1265-1274, 2015.
[47]
Li, G.; Yu, Y. Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5455-5463, 2015.
[48]
Zou, W.; Komodakis, N. HARF: Hierarchy-associated rich features for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, 406-414, 2015.
[49]
Hou, Q.; Cheng, M.-M.; Hu, X.; Borji, A.; Tu, Z.; Torr, P. H. S. Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3203-3212, 2017.
[50]
Treisman, A. M.; Gelade, G. A feature-integration theory of attention. Cognitive Psychology Vol. 12, No. 1, 97-136, 1980.
[51]
Wolfe, J. M.; Cave, K. R.; Franzel, S. L. Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance Vol. 15, No. 3, 419-433, 1989.
[52]
Koch, C.; Ullman, S.Shifts in selective visual attention: Towards the underlying neural circuitry. In: Matters of Intelligence. Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), Vol. 188. Vaina, L. M. Ed. Springer Dordrecht, 115-141, 1987.
[53]
Parkhurst, D.; Law, K.; Niebur, E. Modeling the role of salience in the allocation of overt visual attention. Vision Research Vol. 42, No. 1, 107-123, 2002.
[54]
Bruce, N. D. B.; Tsotsos, J. K. Saliency based on information maximization. In: Proceedings of the 18th International Conference on Neural Information Processing Systems, 155-162, 2005.
[55]
Liu, T.; Yuan, Z. J.; Sun, J.; Wang, J. D.; Zheng, N. N.; Tang, X. O.; Shum, H.-Y. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 2, 353-367, 2011.
[56]
Achanta, R.; Estrada, F.; Wils, P.; Süsstrunk, S.Salient region detection and segmentation. In:Computer Vision Systems. Lecture Notes in Computer Science, Vol. 5008. Gasteratos, A.; Vincze, M.; Tsotsos, J. K. Eds. Springer Berlin Heidelberg, 66-75, 2008.
[57]
Ma, Y.-F.; Zhang, H.-J. Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the 11th ACM International Conference on Multimedia, 374-381, 2003.
[58]
Liu, F.; Gleicher, M. Region enhanced scale-invariant saliency detection. In: Proceedings of the IEEE International Conference on Multimedia and Expo, 1477-1480, 2006.
[59]
Walther, D.; Koch, C. Modeling attention to salient proto-objects. Neural Networks Vol. 19, No. 9, 1395-1407, 2006.
[60]
Arbeláez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 5, 898-916, 2011.
[61]
Martin, D. R.; Fowlkes, C. C.; Malik, J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 26, No. 5, 530-549, 2004.
[62]
Endres, I.; Hoiem, D.Category independent object proposals. In: Computer Vision – ECCV 2010. Lecture Notes in Computer Science, Vol. 6315 Daniilidis, K.; Maragos, P.; Paragios, N. Eds. Springer Berlin Heidelberg, 575-588, 2010.
DOI
[63]
Judd, T.; Ehinger, K.; Durand, F.; Torralba, A. Learning to predict where humans look. In: Proceedings of the IEEE 12th International Conference on Computer Vision, 2106-2113, 2009.
[64]
Hou, X.; Zhang, L. Saliency detection: A spectral residual approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2007.
[65]
Borji, A.; Itti, L. Exploiting local and global patch rarities for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 478-485, 2012.
[66]
Borji, A. Boosting bottom–up and top–down visual features for saliency estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 438-445, 2012.
[67]
Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001.
[68]
Felzenszwalb, P. F.; Girshick, B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 32, No. 9, 1627-1645, 2010.
[69]
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE Vol. 86, No. 11, 2278-2324, 1998.
[70]
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440, 2015.
[71]
Hua, G.; Liu, Z. C.; Zhang, Z. Y.; Wu, Y. Iterative local-global energy minimization for automatic extraction of objects of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 28, No. 10, 1701-1706, 2006.
[72]
Ko, B. C.; Nam, J.-Y. Automatic object-of-interest segmentation from natural images. In: Proceedings of the 18th International Conference on Pattern Recognition, 45-48, 2006.
[73]
Allili, M. S.; Ziou, D. Object of interest segmentation and tracking by using feature selection and active contours. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-8,2007.
[74]
Hu, Y.; Rajan, D.; Chia, L.-T. Robust subspace analysis for detecting visual attention regions in images. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, 716-724, 2005.
[75]
Vidal, R.; Ma, Y.; Sastry, S. Generalized principal component analysis (GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 27, No. 12, 1945-1959, 2005.
[76]
Rosin, P. L. A simple method for detecting salient regions. Pattern Recognition Vol. 42, No. 11, 2363-2371, 2009.
[77]
Valenti, R.; Sebe, N.; Gevers, T. Image saliency by isocentric curvedness and color. In: Proceedings of the IEEE 12th International Conference on Computer Vision, 2185-2192, 2009.
[78]
Klein, D. A.; Frintrop, S. Center-surround divergence of feature statistics for salient object detection. In: Proceedings of the International Conference on Computer Vision, 2214-2219, 2011.
[79]
Li, X.; Li, Y.; Shen, C.; Dick, A. R.; van den Hengel, A. Contextual hypergraph modeling for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, 3328-3335, 2013.
[80]
Margolin, R.; Tal, A.; Zelnik-Manor, L. What makes a patch distinct? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1139-1146, 2013.
[81]
Felzenszwalb, P. F.; Huttenlocher, D. P. Efficient graph-based image segmentation. International Journal of Computer Vision Vol. 59, No. 2, 167-181, 2004.
[82]
Levinshtein, A.; Stere, A.; Kutulakos, K. N.; Fleet, D. J.; Dickinson, S. J.; Siddiqi, K. TurboPixels: Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 31, No. 12, 2290-2297, 2009.
[83]
Yu, Z. W.; Wong, H. S. A rule based technique for extraction of visual attention regions based on real-time clustering. IEEE Transactions on Multimedia Vol. 9, No. 4, 766-784, 2007.
[84]
Cheng, M. M.; Mitra, N. J.; Huang, X. L.; Torr, P. H. S.; Hu, S. M. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 37, No. 3, 569-582, 2015.
[85]
Scharfenberger, C.; Wong, A.; Fergani, K.; Zelek, J. S.; Clausi, D. A. Statistical textural distinctiveness for salient region detection in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 979-986, 2013.
[86]
Cheng, M.-M.; Warrell, J.; Lin, W.-Y.; Zheng, S.; Vineet, V.; Crook, N. Efficient salient region detection with soft image abstraction. In: Proceedings of the IEEE International Conference on Computer Vision, 1529-1536, 2013.
[87]
Jiang, Z.; Davis, L. S. Submodular salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2043-2050, 2013.
[88]
Adams, A.; Baek, J.; Davis, M. A. Fast high-dimensional filtering using the permutohedral lattice. Computer Graphics Forum Vol. 29, No. 2, 753-762, 2010.
[89]
Shi, K. Y.; Wang, K. Z.; Lu, J. B.; Lin, L. PISA: Pixelwise image saliency by aggregating complementary appearance contrast measures with spatial priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2115-2122, 2013.
[90]
Yu, H. N.; Li, J.; Tian, Y. H.; Huang, T. J. Automatic interesting object extraction from images using complementary saliency maps. In: Proceedings of the International Conference on Multimedia, 891-894, 2010.
[91]
Lu, Y.; Zhang, W.; Lu, H.; Xue, X. Salient object detection using concavity context. In: Proceedings of the International Conference on Computer Vision, 233-240, 2011.
[92]
Chang, K.-Y.; Liu, T.-L.; Chen, H.-T.; Lai, S.-H. Fusing generic objectness and visual saliency for salient object detection. In: Proceedings of the International Conference on Computer Vision, 914-921, 2011.
[93]
Jiang, H.; Wang, J.; Yuan, Z.; Liu, T.; Zheng, N. Automatic salient object segmentation based on context and shape prior. In: Proceedings of the British Machine Vision Conference, 2011.
[94]
Shen, X.; Wu, Y. A unified approach to salient object detection via low rank matrix recovery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 853-860, 2012.
[95]
Wei, Y. C.; Wen, F.; Zhu, W. J.; Sun, J.Geodesic saliency using background priors. In: Computer Vision – ECCV 2012. Lecture Notes in Computer Science, Vol. 7574. Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds. Springer Berlin Heidelberg, 29-42, 2012.
[96]
Xie, Y. L.; Lu, H. C.; Yang, M. H. Bayesian saliency via low and mid level cues. IEEE Transactions on Image Processing Vol. 22, No. 5, 1689-1698, 2013.
[97]
Yang, C.; Zhang, L.; Lu, H.; Ruan, X.; Yang, M.-H. Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3166-3173, 2013.
[98]
Li, X.; Lu, H.; Zhang, L.; Ruan, X.; Yang, M.-H. Saliency detection via dense and sparse reconstruction. In: Proceedings of the IEEE International Conference on Computer Vision, 2976-2983, 2013.
[99]
Jiang, B.; Zhang, L.; Lu, H.; Yang, C.; Yang, M.-H. Saliency detection via absorbing Markov chain. In: Proceedings of the IEEE International Conference on Computer Vision, 1665-1672, 2013.
[100]
Jiang, P.; Ling, H.; Yu, J.; Peng, J. Salient region detection by UFO: Uniqueness, focusness and objectness. In: Proceedings of the IEEE International Conference on Computer Vision, 1976-1983, 2013.
[101]
Jia, Y.; Han, M. Category-independent object-level saliency detection. In: Proceedings of the IEEE International Conference on Computer Vision, 1761-1768, 2013.
[102]
Zou, W.; Kpalma, K.; Liu, Z.; Ronsin, J. Segmentation driven low-rank matrix recovery for saliency detection. In: Proceedings of the 24th British Machine Vision Conference, 1-13, 2013.
[103]
Peng, H.; Li, B.; Ji, R.; Hu, W.; Xiong, W.; Lang, C. Salient object detection via low-rank and structured sparse matrix decomposition. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, 796-802, 2013.
[104]
Liu, R.; Cao, J.; Lin, Z.; Shan, S. Adaptive partial differential equation learning for visual saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3866-3873, 2014.
[105]
Zhu, W.; Liang, S.; Wei, Y.; Sun, J. Saliency optimization from robust background detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2814-2821, 2014.
[106]
Zhang, J.; Sclaroff, S. Saliency detection: A Boolean map approach. In: Proceedings of the IEEE International Conference on Computer Vision, 153-160, 2013.
[107]
Li, N.; Ye, J.; Ji, Y.; Ling, H.; Yu, J. Saliency detection on light field. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2806-2813, 2014.
[108]
Rahtu, E.; Kannala, J.; Salo, M.; Heikkilä, J.Segmenting salient objects from images and videos. In: Computer Vision – ECCV 2010. Lecture Notes in Computer Science, Vol. 6315. Daniilidis, K.; Maragos, P.; Paragios, N. Eds. Springer Berlin Heidelberg, 366-379, 2010.
DOI
[109]
Khuwuthyakorn, P.; Robles-Kelly, A.; Zhou, J.Object of interest detection by saliency learning.In: Computer Vision – ECCV 2010. Lecture Notes in Computer Science, Vol. 6312. Daniilidis, K.; Maragos, P.; Paragios, N. Eds. Springer Berlin Heidelberg, 636-649, 2010.
DOI
[110]
Mehrani, P.; Veksler, O. Saliency segmentation based on learning and graph cut refinement. In: Proceedings of the British Machine Vision Conference, 110.1-110.12. 2010.
[111]
Lu, S.; Mahadevan, V.; Vasconcelos, N. Learning optimal seeds for diffusion-based salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2790-2797, 2014.
[112]
Kim, J.; Han, D.; Tai, Y.-W.; Kim, J. Salient region detection via high-dimensional color transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 883-890, 2014.
[113]
Marchesotti, L.; Cifarelli, C.; Csurka, G. A framework for visual saliency detection with applications to image thumbnailing. In: Proceedings of the IEEE 12th International Conference on Computer Vision, 2232-2239, 2009.
[114]
Wang, M.; Konrad, J.; Ishwar, P.; Jing, K.; Rowley, H. Image saliency: From intrinsic to extrinsic context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 417-424, 2011.
[115]
Mai, L.; Niu, Y.; Liu, F. Saliency aggregation: A datadriven approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1131-1138, 2013.
[116]
Zhai, Y.; Shah, M. Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of the 14th ACM International Conference on Multimedia, 815-824, 2006.
[117]
Liu, T.; Zheng, N.; Ding, W.; Yuan, Z. Video attention: Learning to detect a salient object sequence. In: Proceedings of the 19th International Conference on Pattern Recognition, 1-4, 2008.
[118]
Li, Y.; Sheng, B.; Ma, L. Z.; Wu, W.; Xie, Z. F. Temporally coherent video saliency using regional dynamic contrast. IEEE Transactions on Circuits and Systems for Video Technology Vol. 23, No. 12, 2067-2076, 2013.
[119]
Li, H. L.; Ngan, K. N. A co-saliency model of image pairs. IEEE Transactions on Image Processing Vol. 20, No. 12, 3365-3375, 2011.
[120]
Chang, K.; Liu, T.; Lai, S. From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2129-2136, 2011.
[121]
Fu, H. Z.; Cao, X. C.; Tu, Z. W. Cluster-based co-saliency detection. IEEE Transactions on Image Processing Vol. 22, No. 10, 3766-3778, 2013.
[122]
Niu, Y.; Geng, Y.; Li, X.; Liu, F. Leveraging stereopsis for saliency analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 454-461, 2012.
[123]
Desingh, K.; Krishna, K. M.; Rajan, D.; Jawahar, C. V. Depth really matters: Improving visual salient region detection with depth. In: Proceedings of the British Machine Vision Conference, 2013.
[124]
Rother, C.; Minka, T. P.; Blake, A.; Kolmogorov, V. Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 993-1000, 2006.
[125]
Batra, D.; Kowdle, A.; Parikh, D.; Luo J.; Chen, T. iCoseg: Interactive co-segmentation with intelligent scribble guidance. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3169-3176, 2010.
[126]
Mukherjee, L.; Singh, V.; Peng, J. Scale invariant cosegmentation for image groups. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1881-1888, 2011.
[127]
Kim, G.; Xing, E. P.; Li, F. F.; Kanade, T. Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: Proceedings of the International Conference on Computer Vision Barcelona, 169-176, 2011.
[128]
Feng, J.; Wei, Y.; Tao, L.; Zhang, C.; Sun, J. Salient object detection by composition. In: Proceedings of the International Conference on Computer Vision, 1028-1035, 2011.
[129]
Wang, P.; Wang, J.; Zeng, G.; Feng, J.; Zha, H.; Li, S. Salient object detection for searched web images via global saliency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, 3194-3201, 2012.
[130]
Wang, L.; Xue, J.; Zheng, N.; Hua, G. Automatic salient object extraction with contextual cue. In: Proceedings of the International Conference on Computer Vision, 105-112, 2011.
[131]
Tian, Y. H.; Li, J.; Yu, S.; Huang, T. J. Learning complementary saliency priors for foreground object segmentation in complex scenes. International Journal of Computer Vision Vol. 111, No. 2, 153-170, 2015.
[132]
Borji, A.; Cheng, M. M.; Jiang, H. Z.; Li, J. Salient object detection: A benchmark. IEEE Transactions on Image Processing Vol. 24, No. 12, 5706-5722, 2015.
[133]
Li, J.; Tian, Y. H.; Duan, L. Y.; Huang, T. J. Estimating visual saliency through single image optimization. IEEE Signal Processing Letters Vol. 20, No. 9, 845-848, 2013.
[134]
Shi, J. B.; Malik, J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 22, No. 8, 888-905, 2000.
[135]
Tu, Z. W.; Bai, X. Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 32, No. 10, 1744-1757, 2010.
[136]
Qin, Y.; Lu, H. C.; Xu, Y. Q.; Wang, H. Saliency detection via cellular automata. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 110-119, 2015.
[137]
Li, Y.; Sun, J.; Tang, C. K.; Shum, H. Y. Lazy snapping. ACM Transactions on Graphics Vol. 23, No. 3, 303-308, 2004.
[138]
Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut”: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics Vol. 23, No. 3, 309-314, 2004.
[139]
Lang, C. Y.; Nguyen, T. V.; Katti, H.; Yadati, K.; Kankanhalli, M.; Yan, S. C.Depth matters: Influence of depth cues on visual saliency. In: Computer Vision –ECCV 2012. Lecture Notes in Computer Science, Vol. 7573. Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds. Springer Berlin Heidelberg, 101-115, 2012.
DOI
[140]
Zhang, J.; Wang, M.; Lin, L.; Yang, X.; Gao, J.; Rui, Y. Saliency detection on light field. ACM Transactions on Multimedia Computing, Communications, and Applications Vol. 13, No. 3, 1-22, 2017.
[141]
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM Vol. 60, No. 6, 84-90, 2017.
[142]
Xie, S.; Tu, Z. Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, 1395-1403, 2015.
[143]
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9, 2015.
[144]
Lee, G.; Tai, Y.-W.; Kim, J. Deep saliency with encoded low level distance map and high level features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 660-668, 2016.
[145]
Kim, J.; Pavlovic, V. A shape preserving approach for salient object detection using convolutional neural networks. In: Proceedings of the 23rd International Conference on Pattern Recognition, 609-614, 2016.
[146]
Wang, X.; Ma, H. M.; Chen, X. Z. Salient object detection via fast R-CNN and low-level cues. In: Proceedings of the IEEE International Conference on Image Processing, 1042-1046, 2016.
[147]
Kim, J.; Pavlovic, V. A shape preserving approach for salient object detection using convolutional neural networks. In: Proceedings of the 23rd International Conference on Pattern Recognition, 609-614, 2016.
[148]
Chen, T. S.; Lin, L.; Liu, L. B.; Luo, X. N.; Li, X. L. DISC: Deep image saliency computing via progressive representation learning. IEEE Transactions on Neural Networks and Learning Systems Vol. 27, No. 6, 1135-1149, 2016.
[149]
Li, H. Y.; Chen, J.; Lu, H. C.; Chi, Z. Z. CNN for saliency detection with low-level feature integration. Neurocomputing Vol. 226, 212-220, 2017.
[150]
Liu, N.; Han, J. DHSNet: Deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 678-686, 2016.
[151]
Li, G. B.; Yu, Y. Z. Deep contrast learning for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 478-487, 2016.
[152]
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[153]
Kuen, J.; Wang, Z. H.; Wang, G. Recurrent attentional networks for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3668-3677, 2016.
[154]
Kruthiventi, S. S. S.; Gudisa, V.; Dholakiya, J. H.; Babu, R. V. Saliency unified: A deep architecture for simultaneous eye fixation prediction and salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5781-5790, 2016.
[155]
Tang, Y. B.; Wu, X. Q.Saliency detection via combining region-level and pixel-level predictions with CNNs. In: Computer Vision – ECCV 2016. Lecture Notes in Computer Science, Vol. 9912. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 809-825 2016.
[156]
Tang, Y. B.; Wu, X. Q.; Bu, W. Deeply-supervised recurrent convolutional neural network for saliency detection. In: Proceedings of the ACM on Multimedia Conference, 397-401, 2016.
[157]
Li, X.; Zhao, L. M.; Wei, L. N.; Yang, M. H.; Wu, F.; Zhuang, Y. T. et al. DeepSaliency: Multi-task deep neural network model for salient object detection. IEEE Transactions on Image Processing Vol. 25, No. 8, 3919-3930, 2016.
[158]
Zhang, J.; Dai, Y. C.; Porikli, F. Deep salient object detection by integrating multi-level cues. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 1-10, 2017.
[159]
Li, G.; Xie, Y.; Lin, L.; Yu, Y. Instance-level salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2386-2395, 2017.
[160]
Wang, L. J.; Lu, H. C.; Ruan, X.; Yang, M. H. Deep networks for saliency detection via local estimation and global search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3183-3192, 2015.
[161]
Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580-587, 2014.
[162]
Uijlings, J. R. R.; van de Sande, K. E. A.; Gevers, T.; Smeulders, A. W. M. Selective search for object recognition. International Journal of Computer Vision Vol. 104, No. 2, 154-171, 2013.
[163]
Zeiler, M. D.; Fergus, R.Visualizing and understanding convolutional networks. In:Computer Vision – ECCV 2014. Lecture Notes in Computer Science, Vol. 8689. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer Cham, 818-833, 2014.
[164]
Lee, C.-Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-supervised nets. In: Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 562-570, 2015.
[165]
Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial transformer networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, Vol. 2, 2017-2025, 2015.
[166]
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 34, No. 11, 2274-2282, 2012.
[167]
Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 4, 834-848, 2018.
[168]
Arbelaez, P.; PontTuset, J.; Barron, J. T.; Marques, F.; Malik, J. Multiscale combinatorial grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 328-335, 2014.
[169]
Krähenbühl, P.; Koltun, V. Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Proceedings of the 24th International Conference on Neural Information Processing Systems, 109-117, 2011.
[170]
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S. A.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision Vol. 115, No. 3, 211-252, 2015.
[171]
Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1717-1724, 2014.
[172]
Jiang, H.; Wang, J.; Yuan, Z.; Wu, Y.; Zheng, N.; Li, S. Salient object detection: A discriminative regional feature integration approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2083-2090, 2013.
[173]
Zhang, G. X.; Cheng, M. M.; Hu, S. M.; Martin, R. R. A shape-preserving approach to image resizing. Computer Graphics Forum Vol. 28, No. 7, 1897-1906, 2009.
[174]
Huang, H.; Zhang, L.; Zhang, H. C. Arcimboldo-like collage using Internet images. ACM Transactions on Graphics Vol. 30, No. 6, Article No. 155, 2011.
[175]
Liu, H.; Zhang, L.; Huang, H. Web-image driven best views of 3D shapes. The Visual Computer Vol. 28, No. 3, 279-287, 2012.
[176]
Zhu, J.; Wu, J.; Wei, Y.; Chang, E.; Tu, Z. Unsupervised object class discovery via saliency-guided multiple class learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3218-3225, 2012.
[177]
Chen, T.; Cheng, M.-M.; Tan, P.; Shamir, A.; Hu, S.-M. Sketch2Photo: Internet image montage. ACM Transactions on Graphics Vol. 28, No. 5, Article No. 124, 2009.
[178]
Goldberg, C.; Chen, T.; Zhang, F. L.; Shamir, A.; Hu, S. M. Data-driven object manipulation in images. Computer Graphics Forum Vol. 31, No. 2pt1, 265-274, 2012.
[179]
Chia, A. Y.-S.; Zhuo, S.; Gupta, R. K.; Tai, Y.-W.; Cho, S.-Y.; Tan, P.; Lin, S. Semantic colorization with internet images. ACM Transactions on Graphics Vol. 30, No. 6, Article No. 156, 2011.
[180]
Rutishauser, U.; Walther, D.; Koch, C.; Perona P. Is bottom–up attention useful for object recognition? In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, II, 2004.
[181]
Kanan, C.; Cottrell, G. Robust classification of objects, faces, and flowers using natural image statistics. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2472-2479, 2010.
[182]
Moosmann, F.; Larlus, D.; Jurie, F. Learning saliency maps for object categorization. In: Proceedings of the International Workshop on the Representation and Use of Prior Knowledge in Vision, 2006.
[183]
Borji, A.; Ahmadabadi, M. N.; Araabi, B. N. Cost-sensitive learning of top-down modulation for attentional control. Machine Vision and Applications Vol. 22, No. 1, 61-76, 2011.
[184]
Borji, A.; Itti, L. Scene classification with a sparse set of salient regions. In: Proceedings of the IEEE International Conference on Robotics and Automation, 1902-1908, 2011.
[185]
Shen, H.; Li, S. X.; Zhu, C. F.; Chang, H. X.; Zhang, J. L. Moving object detection in aerial video based on spatiotemporal saliency. Chinese Journal of Aeronautics Vol. 26, No. 5, 1211-1217, 2013.
[186]
Ren, Z. X.; Gao, S. H.; Chia, L. T.; Tsang, I. W. H. Region-based saliency detection and its application in object recognition. IEEE Transactions on Circuits and Systems for Video Technology Vol. 24, No. 5, 769-779, 2014.
[187]
Guo, C. L.; Zhang, L. M. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Transactions on Image Processing Vol. 19, No. 1, 185-198, 2010.
[188]
Itti, L. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing Vol. 13, No. 10, 1304-1318, 2004.
[189]
Ma, Y. F.; Hua, X. S.; Lu, L.; Zhang, H. J. A generic framework of user attention model and its application in video summarization. IEEE Transactions on Multimedia Vol. 7, No. 5, 907-919, 2005.
[190]
Lee, Y. J.; Ghosh, J.; Grauman, K. Discovering important people and objects for egocentric video summarization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1346-1353, 2012.
[191]
Ji, Q. G.; Fang, Z. D.; Xie, Z. H.; Lu, Z. M. Video abstraction based on the visual attention model and online clustering. Signal Processing: Image Communication Vol. 28, No. 3, 241-253, 2013.
[192]
Goferman, S.; Tal, A.; Zelnik-Manor, L. Puzzle-like collage. Computer Graphics Forum Vol. 29, No. 2, 459-468, 2010.
[193]
Wang, J.; Quan, L.; Sun, J.; Tang, X.; Shum, H.-Y. Picture collage. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 347-354, 2006.
[194]
Ninassi, A.; Le Meur, O.; Le Callet, P.; Barba, D. Does where you gaze on an image affect your perception of quality? Applying visual attention to image quality metric. In: Proceedings of the IEEE International Conference on Image Processing, II169-II172, 2007.
[195]
Liu, H. T.; Heynderickx, I. Studying the added value of visual attention in objective image quality metrics based on eye movement data. In: Proceedings of the 16th IEEE International Conference on Image Processing, 3097-3100, 2009.
[196]
Li, A.; She, X.; Sun, Q. Color image quality assessment combining saliency and FSIM. In: Proceedings of the SPIE 8878, 5th International Conference on Digital Image Processing, 88780I, 2013.
[197]
Donoser, M.; Urschler, M.; Hirzer, M.; Bischof, H. Saliency driven total variation segmentation. In: Proceedings of the IEEE 12th International Conference on Computer Vision, 817-824, 2009.
[198]
Li, Q.; Zhou, Y.; Yang, J. Saliency based image segmentation. In: Proceedings of the International Conference on Multimedia Technology, 5068-5071, 2011.
[199]
Qin, C. C.; Zhang, G. P.; Zhou, Y. C.; Tao, W. B.; Cao, Z. G. Integration of the saliency-based seed extraction and random walks for image segmentation. Neurocomputing Vol. 129, 378-391, 2014.
[200]
Johnson-Roberson, M.; Bohg, J.; Björkman, M.; Kragic, D. Attention-based active 3D point cloud segmentation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1165-1170, 2010.
[201]
Feng, S. H.; Xu, D.; Yang, X. Attention-driven salient edge(s) and region(s) extraction with application to CBIR. Signal Processing Vol. 90, No. 1, 1-15,2010.
[202]
Sun, J. D.; Xie, J. C.; Liu, J.; Sikora, T. Image adaptation and dynamic browsing based on two-layer saliency combination. IEEE Transactions on Broadcasting Vol. 59, No. 4, 602-613, 2013.
[203]
Li, L.; Jiang, S. Q.; Zha, Z. J.; Wu, Z. P.; Huang, Q. M. Partial-duplicate image retrieval via saliency-guided visual matching. IEEE MultiMedia Vol. 20, No. 3, 13-23, 2013.
[204]
Stalder, S.; Grabner, H.; Van Gool, L.Dynamic objectness for adaptive tracking. In: Computer Vision – ACCV 2012. Lecture Notes in Computer Science, Vol. 7726. Lee, K. M.; Matsushita, Y.; Rehg, J. M.; Hu, Z. Eds. Springer Berlin Heidelberg, 43-56, 2013.
DOI
[205]
Li, J.; Levine, M. D.; An, X. J.; Xu, X.; He, H. G. Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 4, 996-1010, 2013.
[206]
García, G. M.; Klein, D. A.; Stückler, J.; Frintrop, S.; Cremers, A. B.Adaptive multi-cue 3D tracking of arbitrary objects. In: Pattern Recognition. Lecture Notes in Computer Science, Vol. 7476. Pinz, A.; Pock, T.; Bischof, H.; Leberl, F. Eds. Springer Berlin Heidelberg, 357-366, 2012.
[207]
Borji, A.; Frintrop, S.; Sihite, D. N.; Itti, L. Adaptive object tracking by learning background context. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 23-30, 2012.
[208]
Klein, D. A.; Schulz, D.; Frintrop, S.; Cremers, A. B. Adaptive real-time video-tracking for arbitrary objects. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 772-777, 2010.
[209]
Frintrop, S.; Kessel, M. Most salient region tracking. In: Proceedings of the IEEE International Conference on Robotics and Automation, 1869-1874, 2009.
[210]
Zhang, G.; Yuan, Z.; Zheng, N.; Sheng, X.; Liu, T.Visual saliency based object tracking. In: Computer Vision – ACCV 2009. Lecture Notes in Computer Science, Vol. 5995. Zha, H.; Taniguchi, R.; Maybank, S. Eds. Springer Berlin Heidelberg, 193-203, 2010.
DOI
[211]
Karpathy, A.; Miller, S.; Li, F-F. Object discovery in 3D scenes via shape analysis. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2088-2095, 2013.
[212]
Frintrop, S.; Garcıa, G. M.; Cremers, A. B. A cognitive approach for object discovery. In: Proceedings of the 22nd International Conference on Pattern Recognition, Stockholm, 2329-2334, 2014.
[213]
Meger, D.; Forssén, P. E.; Lai, K.; Helmer, S.; McCann, S.; Southey, T.; Baumann, M.; Little, J. J.; Lowe, D. G. Curious George: An attentive semantic robot. Robotics and Autonomous Systems Vol. 56, No. 6, 503-511, 2008.
[214]
Sugano, Y.; Matsushita, Y.; Sato, Y. Calibration-free gaze sensing using saliency maps. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2667-2674, 2010.
[215]
[216]
Alpert, S.; Galun, M.; Basri, R.; Brandt, A. Image segmentation by probabilistic bottom–up aggregation and cue integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2007.
[217]
Movahedi, V.; Elder, J. H. Design and perceptual validation of performance measures for salient object segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 49-56, 2010.
[218]
Brown, M.; Süsstrunk, S. Multi-spectral SIFT for scene category recognition. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 177-184, 2011.
[219]
Wang, Q.; Yan, P. K.; Yuan, Y.; Li, X. L. Multi-spectral saliency detection. Pattern Recognition Letters Vol. 34, No. 1, 34-41, 2013.
[220]
[221]
Thur15k dataset. Available at http://mmcheng.net/gsal/.
[222]
Judd dataset. Available at http://ilab.usc.edu/borji/Resources.html.
[223]
Koehler, K.; Guo, F.; Zhang, S.; Eckstein, M. P. What do saliency models predict? Journal of Vision Vol. 14, No. 3, 14, 2014.
[224]
Xu, J.; Jiang, M.; Wang, S.; Kankanhalli, M. S.; Zhao, Q. Predicting human gaze beyond pixels. Journal of Vision Vol. 14, No. 1, 28, 2014.
[225]
Li, J.; Tian, Y.; Huang, T.; Gao, W. A dataset and evaluation methodology for visual saliency in video. In: Proceedings of the IEEE International Conference on Multimedia and Expo, 442-445, 2009.
[226]
Wu, Y.; Zheng, N. N.; Yuan, Z. J.; Jiang, H. Z.; Liu, T. Detection of salient objects with focused attention based on spatial and temporal coherence. Chinese Science Bulletin Vol. 56, No. 10, 1055-1062,2011.
[227]
Avidan, S.; Shamir, A. Seam carving for content-aware image resizing. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 10, 2007.
[228]
Borji, A.; Cheng, M. M.; Jiang, H. Z.; Li, J. Salient object detection: A benchmark. IEEE Transactions on Image Processing Vol. 24, No. 12, 5706-5722,2015.
[229]
He, K.; Zhang, X.; Ren, S.; Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778, 2016.
[230]
Torralba A.; Efros, A. A. Unbiased look at dataset bias. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1521-1528, 2011.
[231]
Tatler, B. W. The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision Vol. 7, No. 14, 4, 2007.
[232]
Borji, A.; Sihite, D. N.; Itti, L. Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. IEEE Transactions on Image Processing Vol. 22, No. 1, 55-69, 2013.
[233]
Cheng, M. M.; Mitra, N. J.; Huang, X. L.; Hu, S. M. SalientShape: Group saliency in image collections. The Visual Computer Vol. 30, No. 4, 443-453, 2014.
Publication history
Copyright
Rights and permissions

Publication history

Revised: 22 May 2019
Accepted: 27 May 2019
Published: 21 June 2019
Issue date: June 2019

Copyright

© The author(s) 2019

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from thecopyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return