Abstract
In pattern recognition, the task of image set classification has often been performed by representing data using symmetric positive definite (SPD) matrices, in conjunction with the metric of the resulting Riemannian manifold. In this paper, we propose a new data representation framework for image sets which we call component symmetric positive definite representation (CSPD). Firstly, we obtain sub-image sets by dividing the images in the set into square blocks of the same size, and use a traditional SPD model to describe them. Then, we use the Riemannian kernel to determine similarities of corresponding sub-image sets. Finally, the CSPD matrix appears in the form of the kernel matrix for all the sub-image sets; its