AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

An evaluation of moving shadow detection techniques

School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, PenrithNSW 2751Australia.
Show Author Information

Abstract

Shadows of moving objects may cause serious problems in many computer vision applications, including object tracking and object recognition. In common object detection systems, due to having similar characteristics, shadows can be easily misclassified as either part of moving objects or independent moving objects. To deal with the problem of misclassifying shadows as foreground, various methods have been introduced. This paper addresses the main problematic situations associated with shadows and provides a comprehensive performance comparison on up-to-date methods that have been proposed to tackle these problems. The evaluation is carried out using benchmark datasets that have been selected and modified to suit the purpose. This survey suggests the ways of selecting shadow detection methods under different scenarios.

References

[1]
Sanin, A.; Sanderson, C.; Lovell, B. C. Improved shadow removal for robust person tracking in surveillance scenarios. In: Proceedings of the 20th International Conference on Pattern Recognition, 141-144, 2010.
[2]
Asaidi, H.; Aarab, A.; Bellouki, M. Shadow elimination and vehicles classification approaches in traffic video surveillance context. Journal of Visual Languages and Computing Vol. 25, No. 4, 333-345, 2014.
[3]
Meher, S. K.; Murty, M. N. Efficient method of moving shadow detection and vehicle classification. AEU-International Journal of Electronics and Communications Vol. 67, No. 8, 665-670, 2013.
[4]
Johansson, B.; Wiklund, J.; Forssén, P.-E.; Granlund, G. Combining shadow detection and simulation for estimation of vehicle size and position. Pattern Recognition Letters Vol. 30, No. 8, 751-759, 2009.
[5]
Candamo, J.; Shreve, M.; Goldgof, D. B.; Sapper, D. B.; Kasturi, R. Understanding transit scenes: A survey on human behavior-recognition algorithms. IEEE Transactions on Intelligent Transportation Systems Vol. 11, No. 1, 206-224, 2010.
[6]
Gandhi, T.; Chang, R.; Trivedi, M. M. Video and seismic sensor-based structural health monitoring: Framework, algorithms, and implementation. IEEE Transactions on Intelligent Transportation Systems Vol. 8, No. 2, 169-180, 2007.
[7]
Zhang, R.; Tsai, P.-S.; Cryer, J. E.; Shah, M. Shape-from-shading: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 21, No. 8, 690-706, 1999.
[8]
Norman, J. F.; Lee, Y.; Phillips, F.; Norman, H. F.; Jennings, L. R.; McBride, T. R. The perception of 3-D shape from shadows cast onto curved surfaces. Acta Psychologica Vol. 131, No. 1, 1-11, 2009.
[9]
Ok, A. O. Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts. ISPRS Journal of Photogrammetry and Remote Sensing Vol. 86, 21-40, 2013.
[10]
Sato, I.; Sato, Y.; Ikeuchi, K. Illumination from shadows. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 25, No. 3, 290-300, 2003.
[11]
Liu, Y.; Gevers, T.; Li, X. Estimation of sunlight direction using 3D object models. IEEE Transactions on Image Processing Vol. 24, No. 3, 932-942, 2015.
[12]
Wu, L.; Cao, X.; Foroosh, H. Camera calibration and geo-location estimation from two shadow trajectories. Computer Vision and Image Understanding Vol. 114, No. 8, 915-927, 2010.
[13]
Iiyama, M.; Hamada, K.; Kakusho, K.; Minoh, M. Usage of needle maps and shadows to overcome depth edges in depth map reconstruction. In: Proceedings of the 19th International Conference on Pattern Recognition, 1-4, 2008.
[14]
Levine, M. D.; Bhattacharyya, J. Removing shadows. Pattern Recognition Letters Vol. 26, No. 3, 251-265, 2005.
[15]
Deng, W.; Hu, J.; Guo, J.; Cai, W.; Feng, D. Robust, accurate and efficient face recognition from a single training image: A uniform pursuit approach. Pattern Recognition Vol. 43, No. 5, 1748-1762, 2010.
[16]
Cai, X.-H.; Jia, Y.-T.; Wang, X.; Hu, S.-M.; Martin, R. R. Rendering soft shadows using multilayered shadow fins. Computer Graphics Forum Vol. 25, No. 1, 15-28, 2006.
[17]
Petrović L.; Fujito, B.; Williams, L.; Finkelstein, A. Shadows for cel animation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 511-516, 2000.
[18]
Hu, S.-M.; Zhang, F.-L.; Wang, M.; Martin, R. R.; Wang, J. PatchNet: A patch-based image representation for interactive library-driven image editing. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 196, 2013.
[19]
Lu, S.-P.; Zhang, S.-H.; Wei, J.; Hu, S.-M.; Martin, R. R. Timeline editing of objects in video. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 7, 1218-1227, 2013.
[20]
Hu, S.-M.; Chen, T.; Xu, K.; Cheng, M.-M.; Martin, R. R. Internet visual media processing: A survey with graphics and vision applications. The Visual Computer Vol. 29, No. 5, 393-405, 2013.
[21]
Datasets with ground truths. Available at http:// arma.sourceforge.net/shadows/.
[22]
Russell, A.; Zou, J. J. Moving shadow detection based on spatial-temporal constancy. In: Proceedings of the 7th International Conference on Signal Processing and Communication Systems, 1-6, 2013.
[23]
Sanin, A.; Sanderson, C.; Lovell, B. C. Shadow detection: A survey and comparative evaluation of recent methods. Pattern Recognition Vol. 45, No. 4, 1684-1695, 2012.
[24]
Kubelka, P. New contributions to the optics of intensely light-scattering materials. Part I. Journal of the Optical Society of America Vol. 38, No. 5, 448-457, 1948.
[25]
Phong, B. T. Illumination for computer generated pictures. Communications of the ACM Vol. 18, No. 6, 311-317, 1975.
[26]
Change detection datasets with ground truths. Available at http://www.changedetection.net/.
[27]
Cvrr-aton datasets with ground truths. Available at http://cvrr.ucsd.edu/aton/shadow/.
[28]
Fgshbenchmark datasets with ground truths. Available at http://web.eee.sztaki.hu/∼bcsaba/\\FgShBenchmark.htm.
[29]
Prati, A.; Mikic, I.; Trivedi, M. M.; Cucchiara, R. Detecting moving shadows: Algorithms and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 25, No. 7, 918-923, 2003.
[30]
Al-Najdawi, N.; Bez, H. E.; Singhai, J.; Edirisinghe, E. A. A survey of cast shadow detection algorithms. Pattern Recognition Letters Vol. 33, No. 6, 752-764, 2012.
[31]
Chen, C.-C.; Aggarwal, J. K. Human shadow removal with unknown light source. In: Proceedings of the 20th International Conference on Pattern Recognition, 2407-2410, 2010.
[32]
Yoneyama, A.; Yeh, C.-H.; Kuo, C.-C. J. Robust vehicle and traffic information extraction for highway surveillance. EURASIP Journal on Applied Signal Processing Vol. 2005, 2305-2321, 2005.
[33]
Hsieh, J.-W.; Hu, W.-F.; Chang, C.-J.; Chen, Y.-S. Shadow elimination for effective moving object detection by Gaussian shadow modeling. Image and Vision Computing Vol. 21, No. 6, 505-516, 2003.
[34]
Bi, S.; Liang, D.; Shen, X.; Wang, Q. Human cast shadow elimination method based on orientation information measures. In: Proceedings of IEEE International Conference on Automation and Logistics, 1567-1571, 2007.
[35]
Fang, L. Z.; Qiong, W. Y.; Sheng, Y. Z. A method to segment moving vehicle cast shadow based on wavelet transform. Pattern Recognition Letters Vol. 29, No. 16, 2182-2188, 2008.
[36]
Nadimi, S.; Bhanu, B. Moving shadow detection using a physics-based approach. In: Proceedings of the 16th International Conference on Pattern Recognition, Vol. 2, 701-704, 2002.
[37]
Wang, J. M.; Chung, Y. C.; Chang, C. L.; Chen, S. W. Shadow detection and removal for traffic images. In: Proceedings of IEEE International Conference on Networking, Sensing and Control, Vol. 1, 649-654, 2004.
[38]
Nicolas, H.; Pinel, J. M. Joint moving cast shadows segmentation and light source detection in video sequences. Signal Processing: Image Communication Vol. 21, No. 1, 22-43, 2006.
[39]
Joshi, A. J.; Papanikolopoulos, N. P. Learning to detect moving shadows in dynamic environments. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 30, No. 11, 2055-2063, 2008.
[40]
Russell, M.; Zou, J. J.; Fang, G. Real-time vehicle shadow detection. Electronics Letters Vol. 51, No. 16, 1253-1255, 2015.
[41]
Yang, M.-T.; Lo, K.-H.; Chiang, C.-C.; Tai, W.-K. Moving cast shadow detection by exploiting multiple cues. IET Image Processing Vol. 2, No. 2, 95-104, 2008.
[42]
Amato, A.; Mozerov, M. G.; Bagdanov, A. D.; Gonzlez, J. Accurate moving cast shadow suppression based on local color constancy detection. IEEE Transactions on Image Processing Vol. 20, No. 10, 2954-2966, 2011.
[43]
Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A. Detecting moving objects, ghosts and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 25, No. 10, 1337-1342, 2003.
[44]
Salvador, E.; Cavallaro, A.; Ebrahimi, T. Cast shadow segmentation using invariant color features. Computer Vision and Image Understanding Vol. 95, No. 2, 238-259, 2004.
[45]
Stander, J.; Mech, R.; Ostermann, J. Detection of moving cast shadows for object segmentation. IEEE Transactions on Multimedia Vol. 1, No. 1, 65-76, 1999.
[46]
Cucchiara, R.; Grana, C.; Neri, G.; Piccardi, M.; Prati, A. The Sakbot system for moving object detection and tracking. In: Video-Based Surveillance Systems. Remagnino, P.; Jones, G. A.; Paragios, N.; Regazzoni, C. S. Eds. Springer US, 145-157, 2002.
[47]
Haritaoglu, I.; Harwood, D.; Davis, L. S. W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 22, No. 8, 809-830, 2000.
[48]
Mikic, I.; Cosman, P. C.; Kogut, G. T.; Trivedi, M. M. Moving shadow and object detection in traffic scenes. In: Proceedings of the 15th International Conference on Pattern Recognition, Vol. 1, 321-324, 2000.
[49]
Melli, R.; Prati, A.; Cucchiara, R.; de Cock, L. Predictive and probabilistic tracking to detect stopped vehicles. In: Proceedings of the 17th IEEE Workshops on Application of Computer Vision, Vol. 1, 388-393, 2005.
[50]
Cavallaro, A.; Salvador, E.; Ebrahimi, T. Shadow-aware object-based video processing. IEE Proceedings—Vision, Image and Signal Processing Vol. 152, No. 4, 398-406, 2005.
[51]
Lo, K.-H.; Yang, M.-T. Shadow detection by integrating multiple features. In: Proceedings of the 18th International Conference on Pattern Recognition, Vol. 1, 743-746, 2006.
[52]
Toth, D.; Stuke, I.; Wagner, A.; Aach, T. Detection of moving shadows using mean shift clustering and a significance test. In: Proceedings of the 17th International Conference on Pattern Recognition, Vol. 4, 260-263, 2004.
[53]
Guan, Y.-P. Spatio-temporal motion-based foreground segmentation and shadow suppression. IET Computer Vision Vol. 4, No. 1, 50-60, 2010.
[54]
Sun, B.; Li, S. Moving cast shadow detection of vehicle using combined color models. In: Proceedings of Chinese Conference on Pattern Recognition, 1-5, 2010.
[55]
Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A.; Sirotti, S. Improving shadow suppression in moving object detection with HSV color information. In: Proceedings of IEEE Intelligent Transportation Systems, 334-339, 2001.
[56]
Ishida, S.; Fukui, S.; Iwahori, Y.; Bhuyan, M. K.; Woodham, R. J. Shadow model construction with features robust to illumination changes. In: Proceedings of the World Congress on Engineering, Vol. 3, 2013.
[57]
Dai, J.; Qi, M.; Wang, J.; Dai, J.; Kong, J. Robust and accurate moving shadow detection based on multiple features fusion. Optics & Laser Technology Vol. 54, 232-241, 2013.
[58]
Horprasert, T.; Harwood, D.; Davis, L. S. A statistical approach for real-time robust background subtraction and shadow detection. In: Proceedings of IEEE International Conference on Computer Vision, Vol. 99, 1-19, 1999.
[59]
Choi, J.; Yoo, Y. J.; Choi, J. Y. Adaptive shadow estimator for removing shadow of moving object. Computer Vision and Image Understanding Vol. 114, No. 9, 1017-1029, 2010.
[60]
Song, K.-T.; Tai, J.-C. Image-based traffic monitoring with shadow suppression. Proceedings of the IEEE Vol. 95, No. 2, 413-426, 2007.
[61]
Wang, J.; Wang, Y.; Jiang, M.; Yan, X.; Song, M. Moving cast shadow detection using online sub-scene shadow modeling and object inner-edges analysis. Journal of Visual Communication and Image Representation Vol. 25, No. 5, 978-993, 2014.
[62]
Huang, C. H.; Wu, R. C. An online learning method for shadow detection. In: Proceedings of the 4th Pacific-Rim Symposium on Image and Video Technology, 145-150, 2010.
[63]
Kumar, P.; Sengupta, K.; Lee, A. A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system. In: Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, 100-105, 2002.
[64]
Shan, Y.; Yang, F.; Wang, R. Color space selection for moving shadow elimination. In: Proceedings of the 4th International Conference on Image and Graphics, 496-501, 2007.
[65]
Subramanyam, M.; Nallaperumal, K.; Subban, R.; Pasupathi, P.; Shashikala, D.; Kumar, S.; Devi, G. S. A study and analysis of colour space selection for insignificant shadow detection. International Journal of Engineering Research and Technology (IJERT) Vol. 2, No. 12, 2476-2480, 2013.
[66]
Ishida, S.; Fukui, S.; Iwahori, Y.; Bhuyan, M. K.; Woodham, R. J. Shadow detection by three shadow models with features robust to illumination changes. Procedia Computer Science Vol. 35, 1219-1228, 2014.
[67]
Xu, D.; Li, X.; Liu, Z.; Yuan, Y. Cast shadow detection in video segmentation. Pattern Recognition Letters Vol. 26, No. 1, 91-99, 2005.
[68]
Chien, S.-Y.; Ma, S.-Y.; Chen, L.-G. Efficient moving object segmentation algorithm using background registration technique. IEEE Transactions on Circuits and Systems for Video Technology Vol. 12, No. 7, 577-586, 2002.
[69]
Zhang, W.; Fang, X. Z.; Yang, X. K.; Wu, Q. M. J. Moving cast shadows detection using ratio edge. IEEE Transactions on Multimedia Vol. 9, No. 6, 1202-1214, 2007.
[70]
Martel-Brisson, N.; Zaccarin, A. Moving cast shadow detection from a Gaussian mixture shadow model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, 643-648, 2005.
[71]
Xiao, M.; Han, C.-Z.; Zhang, L. Moving shadow detection and removal for traffic sequences. International Journal of Automation and Computing Vol. 4, No. 1, 38-46, 2007.
[72]
Wu, Y.-M.; Ye, X.-Q.; Gu, W.-K. A shadow handler in traffic monitoring system. In: Proceedings of IEEE 55th Vehicular Technology Conference, Vol. 1, 303-307, 2002.
[73]
Panicker, J.; Wilscy, M. Detection of moving cast shadows using edge information. In: Proceedings of the 2nd International Conference on Computer and Automation Engineering, Vol. 5, 817-821, 2010.10.1109/ICCAE.2010.5451878
[74]
Huang, S.; Liu, B.; Wang, W. Moving shadow detection based on Susan algorithm. In: Proceedings of IEEE International Conference on Computer Science and Automation Engineering, Vol. 3, 16-20, 2011.
[75]
ShabaniNia, E.; Naghsh-Nilchi, A. R. Robust watershed segmentation of moving shadows using wavelets. In: Proceedings of the 8th Iranian Conference on Machine Vision and Image Processing, 381-386, 2013.
[76]
Huang, J.-B.; Chen, C.-S. Moving cast shadow detection using physics-based features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2310-2317, 2009.
[77]
Leone, A.; Distante, C. Shadow detection for moving objects based on texture analysis. Pattern Recognition Vol. 40, No. 4, 1222-1233, 2007.
[78]
Smith, S. M.; Brady, J. M. SUSAN—A new approach to low level image processing. International Journal of Computer Vision Vol. 23, No. 1, 45-78, 1997.
[79]
Qin, R.; Liao, S.; Lei, Z.; Li, S. Z. Moving cast shadow removal based on local descriptors. In: Proceedings of the 20th International Conference on Pattern Recognition, 1377-1380, 2010.
[80]
Martel-Brisson, N.; Zaccarin, A. Kernel-based learning of cast shadows from a physical model of light sources and surfaces for low-level segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2008.
[81]
Martel-Brisson, N.; Zaccarin, A. Learning and removing cast shadows through a multidistribution approach. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 29, No. 7, 1133-1146, 2007.
[82]
Liu, Y.; Adjeroh, D. A statistical approach for shadow detection using spatio-temporal contexts. In: Proceedings of IEEE International Conference on Image Processing, 3457-3460, 2010.
[83]
Huang, J.-B.; Chen, C.-S. A physical approach to moving cast shadow detection. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 769-772, 2009.
[84]
Khare, M.; Srivastava, R. K.; Khare, A. Moving shadow detection and removal—A wavelet transform based approach. IET Computer Vision Vol. 8, No. 6, 701-717, 2014.
[85]
Jung, C. R. Efficient background subtraction and shadow removal for monochromatic video sequences. IEEE Transactions on Multimedia Vol. 11, No. 3, 571-577, 2009.
[86]
Khare, M.; Srivastava, R. K.; Khare, A. Daubechies complex wavelet-based computer vision applications. In: Recent Developments in Biometrics and Video Processing Techniques. Srivastava, R.; Singh, S. K.; Shukla, K. K. Eds. IGI Global, 138-155, 2013.
[87]
Dai, J.; Han, D.; Zhao, X. Effective moving shadow detection using statistical discriminant model. Optik—International Journal for Light and Electron Optics Vol. 126, No. 24, 5398-5406, 2015.
[88]
Bullkich, E.; Ilan, I.; Moshe, Y.; Hel-Or, Y.; Hel-Or, H. Moving shadow detection by nonlinear tone-mapping. In: Proceedings of the 19th International Conference on Systems, Signals and Image Processing, 146-149, 2012.
[89]
Huerta, I.; Holte, M. B.; Moeslund, T. B.; Gonzàlez, J. Chromatic shadow detection and tracking for moving foreground segmentation. Image and Vision Computing Vol. 41, 42-53, 2015.
[90]
Javed, O.; Shah, M. Tracking and object classification for automated surveillance. In: Lecture Notes in Computer Science, Vol. 2353. Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P. Eds. Springer Berlin Heidelberg, 343-357, 2002.
[91]
Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A. Detecting objects, shadows and ghosts in video streams by exploiting color and motion information. In: Proceedings of the 11th International Conference on Image Analysis and Processing, 360-365, 2001.
[92]
Zhang, W.; Fang, X. S.; Xu, Y. Detection of moving cast shadows using image orthogonal transform. In: Proceedings of the 18th International Conference on Pattern Recognition, Vol. 1, 626-629, 2006.
[93]
Celik, H.; Ortigosa, A. M.; Hanjalic, A.; Hendriks, E. A. Autonomous and adaptive learning of shadows for surveillance. In: Proceedings of the 9th International Workshop on Image Analysis for Multimedia Interactive Services, 59-62, 2008.
[94]
Benedek, C.; Szirnyi, T. Shadow detection in digital images and videos. In: Computational Photography: Methods and Applications. Lukac, R. Ed. Boca Raton, FL, USA: CRC Press, 283-312, 2011.
[95]
Cogun, F.; Cetin, A. Moving shadow detection in video using cepstrum. International Journal of Advanced Robotic Systems Vol. 10, , 2013.
[96]
Dai, J.; Han, D. Region-based moving shadow detection using affinity propagation. International Journal of Signal Processing, Image Processing and Pattern Recognition Vol. 8, No. 3, 65-74, 2015.
Computational Visual Media
Pages 195-217
Cite this article:
Russell M, Zou JJ, Fang G. An evaluation of moving shadow detection techniques. Computational Visual Media, 2016, 2(3): 195-217. https://doi.org/10.1007/s41095-016-0058-0

725

Views

11

Downloads

27

Crossref

N/A

Web of Science

31

Scopus

0

CSCD

Altmetrics

Revised: 06 April 2016
Accepted: 20 July 2016
Published: 19 August 2016
© The Author(s) 2016

This article is published with open access at Springerlink.com

The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return