Journal Home > Volume 6 , Issue 6

Artificial nanorobot is a type of robots designed for executing complex tasks at nanoscale. The nanorobot system is typically consisted of four systems, including logic control, driving, sensing and functioning. Considering the subtle structure and complex functionality of nanorobot, the manufacture of nanorobots requires designable, controllable and multi-functional nanomaterials. Here, we propose that nanozyme is a promising candidate for fabricating nanorobots due to its unique properties, including flexible designs, controllable enzyme-like activities, and nano-sized physicochemical characters. Nanozymes may participate in one system or even combine several systems of nanorobots. In this review, we summarize the advances on nanozyme-based systems for fabricating nanorobots, and prospect the future directions of nanozyme for constructing nanorobots. We hope that the unique properties of nanozymes will provide novel ideas for designing and fabricating nanorobotics.


menu
Abstract
Full text
Outline
About this article

The prototypes of nanozyme-based nanorobots

Show Author's information Jiaying Xie1Yiliang Jin1,2Kelong Fan1,3( )Xiyun Yan1,3( )
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China

Abstract

Artificial nanorobot is a type of robots designed for executing complex tasks at nanoscale. The nanorobot system is typically consisted of four systems, including logic control, driving, sensing and functioning. Considering the subtle structure and complex functionality of nanorobot, the manufacture of nanorobots requires designable, controllable and multi-functional nanomaterials. Here, we propose that nanozyme is a promising candidate for fabricating nanorobots due to its unique properties, including flexible designs, controllable enzyme-like activities, and nano-sized physicochemical characters. Nanozymes may participate in one system or even combine several systems of nanorobots. In this review, we summarize the advances on nanozyme-based systems for fabricating nanorobots, and prospect the future directions of nanozyme for constructing nanorobots. We hope that the unique properties of nanozymes will provide novel ideas for designing and fabricating nanorobotics.

Keywords: Logic gate, Nanozyme, Nanorobot, Nanomotor, Motion control

References(87)

Ayaz Ahmed KB, Subramanian S, Sivasubramanian A, Veerappan G, Veerappan A (2014) Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochimica Acta Part A 130:54-58

Balasubramanian S, Kagan D, Jack Hu C-M, Campuzano S, Lobo-Castañon MJ, Lim N, Kang DY, Zimmerman M, Zhang L, Wang J (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed 50(18):4161-4164

Baraban L, Harazim SM, Sanchez S, Schmidt OG (2013) Chemotactic behavior of catalytic motors in microfluidic channels. Angew Chem Int Ed Engl 52(21):5552-5556

Celikten A, Cetin A (2016) Recent advances, issues and patents on medical nanorobots. Recent Patents Eng 10(1):28-35

Choi H, Lee GH, Kim KS, Hahn SK (2018) Light-guided nanomotor systems for autonomous photothermal cancer therapy. ACS Appl Mater Interfaces 10(3):2338-2346

Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918-1925

Ding H, Cai Y, Gao L, Liang M, Miao B, Wu H, Liu Y, Xie N, Tang A, Fan K, Yan X, Nie G (2018) Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett 19(1):203-209

Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459-464

Fan K, Jia X, Zhou M, Wang K, Conde J, He J, Tian J, Yan X (2018) Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano 12(5):4105-4115

Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, Gao L (2018) In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun 9(1):1440. https://doi.org/10.1038/s41467-018-03903-8

Fournier-Bidoz SB, Arsenault AC, Manners I, Ozin GA (2005) Synthetic self-propelled nanorotors. Chem Commun. https://doi.org/10.1039/b414896g4

Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577-583

Gao W, Uygun A, Wang J (2012) Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J Am Chem Soc 134(2):897-900

Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588-2593

Gao W, de Avila BE, Zhang L, Wang J (2018) Targeting and isolation of cancer cells using micro/nanomotors. Adv Drug Deliv Rev 125:94-101

Gao L, Gao X, Yan X (2020) Kinetics and mechanisms for nanozymes. In: Yan X et al. (eds) Kinetics and mechanisms for nanozymes. Springer, Singapore, pp 17–39
DOI

Gibbs JG, Zhao YP (2009) Autonomously motile catalytic nanomotors by bubble propulsion. Appl Phys Lett 94(16):163104. https://doi.org/10.1063/1.3122346

Guix M, Meyer AK, Koch B, Schmidt OG (2016) Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ. Sci Rep 6:21701. https://doi.org/10.1038/srep21701

Guo J, Gallegos JJ, Tom AR, Fan D (2018) Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 12(2):1179-1187

Guo Z, Wang T, Rawal A, Hou J, Cao Z, Zhang H, Xu J, Gu Z, Chen V, Liang K (2019) Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Mater Today 28:10-16

He Y, Wu J, Zhao Y (2007) Designing catalytic nanomotors by dynamic shadowing growth. Nano Lett 75:1369-1375

He X, Tan L, Chen D, Wu X, Ren X, Zhang Y, Meng X, Tang F (2013) Fe3O4–Au@mesoporous SiO2 microspheres: an ideal artificial enzymatic cascade system. Chem Commun 49(41):4643-4645

He L, Ni Q, Mu J, Fan W, Liu L, Wang Z, Li L, Tang W, Liu Y, Cheng Y, Tang L, Yang Z, Liu Y, Zou J, Yang W, Jacobson O, Zhang F, Huang P, Chen X (2020) Solvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapy. J Am Chem Soc 142(14):6822-6832

Hong Y, Blackman NM, Kopp ND, Sen A, Velegol D (2007) Chemotaxis of nonbiological colloidal rods. Phys Rev Lett 99(17):178103. https://doi.org/10.1103/PhysRevLett.99.178103

Hong Y, Velegol D, Chaturvedi N, Sen A (2010) Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control. Phys Chem Chem Phys 12(7):1423-1435

Hortelão AC, Patiño T, Perez-Jiménez A, Blanco À, Sánchez S (2017) Enzyme-powered nanobots enhance anticancer drug delivery. Adv Funct Mater 28(25):1705086. https://doi.org/10.1002/adfm.201705086

Howse JR, Jones RA, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev Lett 99(4):048102. https://doi.org/10.1103/PhysRevLett.99.048102

Hu Q, Qian C, Sun W, Wang J, Chen Z, Bomba HN, Xin H, Shen Q, Gu Z (2016) Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv Mater 28(43):9573-9580

Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H (2017) Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater 29(32):1700102

Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13(7):1506-1520

Jiang B, Yan L, Zhang J, Zhou M, Shi G, Tian X, Fan K, Hao C, Yan X (2019) Biomineralization synthesis of the Cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl Mater Interfaces 11(10):9747-9755

Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48(14):3683-3704

Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM, Flechsig GU, Wang J (2009) Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J Am Chem Soc 131(34):12082-12083

Khezri B, Beladi Mousavi SM, Krejčová L, Heger Z, Sofer Z, Pumera M (2019) Ultrafast electrochemical trigger drug delivery mechanism for nanographene micromachines. Adv Funct Mater 29(4):1806696. https://doi.org/10.1002/adfm.201806696

Kim J-w, Dang CV (2006) Cancer’s molecular sweet tooth and the warburg effect. Cancer Res 66(18):8927-8930

Kim DH, Cheang UK, Kőhidai L, Byun D, Kim MJ (2010) Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett 97(17):173702. https://doi.org/10.1063/1.3497275

Kim K-W, Kim BC, Lee HJ, Kim J, Oh M-K (2011) Enzyme logic gates based on enzyme-coated carbon nanotubes. Electroanalysis 23(4):980-986

Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed 44(5):744-746

Laocharoensuk R, Burdick J, Wang J (2008) Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2(5):1069-1075

Li J, Sattayasamitsathit S, Dong R, Gao W, Tam R, Feng X, Ai S, Wang J (2014) Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale 6(16):9415-9420

Li J, Wang J, Wang Y, Trau M (2017) Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles. Analyst 142(24):4788-4793

Lien CW, Chen YC, Chang HT, Huang CC (2013) Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale 5(17):8227-8234

Lien CW, Tseng YT, Huang CC, Chang HT(2014)Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal Chem 86(4):2065-2072

Lin Y, Xu C, Ren J, Qu X (2012) Using thermally regenerable cerium oxide nanoparticles in biocomputing to perform label-free, resettable, and colorimetric logic operations. Angew Chem Int Ed Engl 51(50):12579-12583

Loukanov A, Gagov H, Nakabayashi S (2019a) Artificial nanomachines and nanorobotics. In: Mousa A et al. (eds) The road from nanomedicine to precision medicine. Jenny Stanford Publishing, Singapore, pp 515–532
DOI

Loukanov A, Nikolova S, Filipov C, Nakabayashi S (2019) Nanomaterials for cancer medication: from individual nanoparticles toward nanomachines and nanorobots. Pharmacia 66(3):147-156

Ma X, Jang S, Popescu MN, Uspal WE, Miguel-López A, Hahn K, Kim D-P, Sánchez S (2016) Reversed janus micro/nanomotors with internal chemical engine. ACS Nano 10(9):8751-8759

Manesh KM, Campuzano S, Gao W, Lobo-Castañón MJ, Shitanda I, Kiantaj K, Wang J (2013) Nanomotor-based biocatalytic patterning of helical metal microstructures. Nanoscale 5(4):1310-1314

Mano N, Heller A (2005) Bioelectrochemical propulsion. J Am Chem Soc 127(33):11574-11575

Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-azzam SI, Alzoubi KH (2015) Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 67(3):427-435

Mirkovic T, Zacharia NS, Scholes GD, Ozin GA (2010) Fuel for thought: chemically powered nanomotors out-swim nature’s flagellated bacteria. ACS Nano 4(4):1782-1789

Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA (2017) Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 5(1):23-29

Munir S, Shah AA, Rahman H, Bilal M, Rajoka MSR, Khan AA, Khurshid M (2020) Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnol Lett 42(3):357-373

Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530-535

Paxton WF, Kistler KC, Olmeda CC, Sen A, St Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126(41):13424-13431

Perez JM, Asati A, Nath S, Kaittanis C (2008) Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 4(5):552-556

Qin W, Peng T, Gao Y, Wang F, Hu X, Wang K, Shi J, Li D, Ren J, Fan C (2017) Catalysis-driven self-thermophoresis of Janus plasmonic nanomotors. Angew Chem Int Ed 5(62):515-518

Sharma V, Mobin SM (2017) Cytocompatible peroxidase mimic CuO:graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation. Sens Actuators B 240:338-348

Sierra DP, Weir NA, Jones JF (2005) A review of research in the field of nanorobotics (No. SAND2005-6808). Sandia National Laboratories
DOI

Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT (2011) A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32(28):6745-6753

Son D, Lee J, Lee DJ, Ghaffari R, Yun S, Kim SJ, Lee JE, Cho HR, Yoon S, Yang S, Lee S, Qiao S, Ling D, Shin S, Song JK, Kim J, Kim T, Lee H, Kim J, Soh M, Lee N, Hwang CS, Nam S, Lu N, Hyeon T, Choi SH, Kim DH (2015) Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 9(6):5937-5946

Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794-798

Tregubov AA, Nikitin PI, Nikitin MP (2018) Advanced smart nanomaterials with integrated logic-gating and biocomputing: dawn of theranostic nanorobots. Chem Rev 118(20):10294-10348

Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5(8):626-634

Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198-206

Vicario J, Eelkema R, Browne WR, Meetsma A, La Crois RM, Feringa BL (2005) Catalytic molecular motors: fuelling autonomous movement by a surface bound synthetic manganese catalase. Chem Commun 31:3936-3938

Villa K, Krejčová L, Novotný F, Heger Z, Sofer Z, Pumera M (2018) Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv Funct Mater 2843:1804343. https://doi.org/10.1002/adfm.201804343

Wan M, Chen H, Wang Q, Niu Q, Xu P, Yu Y, Zhu T, Mao C, Shen J (2019) Bio-inspired nitric-oxide-driven nanomotor. Nat Commun 10(1):966. https://doi.org/10.1038/s41467-019-08670-8

Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6(3):338-345

Wang H, Pumera M (2015) Fabrication of micro/nanoscale motors. Chem Rev 115(16):8704-8735

Wang C-I, Huang C-C, Lin Y-W, Chen W-T, Chang H-T (2012) Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions. Anal Chim Acta 745:124-130

Wang J, Xiong Z, Zhan X, Dai B, Zheng J, Liu J, Tang J (2017) A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv Mater 2930:1701451. https://doi.org/10.1002/adma.201701451

Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X (2017) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145-157

Wang Z, Zhang Y, Ju E, Liu Z, Cao F, Chen Z, Ren J, Qu X (2018) Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat Commun 9(1):3334. https://doi.org/10.1038/s41467-018-05798-x

Wang J, Dong R, Wu H, Cai Y, Ren B (2019) A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett 12(1):1-19. https://doi.org/10.1007/s40820-019-0350-5

Xu B, Zhang B, Wang L, Huang G, Mei Y (2018) Tubular micro/nanomachines: from the basics to recent advances. Adv Funct Mater 28(25):1705872. https://doi.org/10.1002/adfm.201705872

Xu Y, Fei J, Li G, Yuan T, Xu X, Li J (2019) Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew Chem Int Ed 58(17):5572-5576

Yan X, Gao L (2020) Nanozymology: An Overview. In: Yan X et al. (eds) Nanozymology: an overview. Springer, Singapore, pp 3–16
DOI

Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, Yang G, Shao H, Jiang X (2017) Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 11(6):5737-5745

Yang J, Zhang C, Wang X, Wang W, Xi N, Liu L (2018) Development of micro- and nanorobotics: a review. Sci China Technol Sci 62(1):1-20

Yoshida W, Yokobayashi Y (2007) Photonic Boolean logic gates based on DNA aptamers. Chem Commun. https://doi.org/10.1039/b613201d2):195-197

Zha F, Wang T, Luo M, Guan J (2018) Tubular micro/nanomotors: propulsion mechanisms, fabrication techniques and applications. Micromachines 9(2):78. https://doi.org/10.3390/mi9020078

Zhang X, Chen C, Wu J, Ju H (2019) Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl Mater Interfaces 11(14):13581-13588

Zhang Y, Jin Y, Cui H, Yan X, Fan K (2020) Nanozyme-based catalytic theranostics. RSC Adv 10(1):10-20

Zhao Y, Huang Y, Zhu H, Zhu Q, Xia Y (2016) Three-in-one: sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J Am Chem Soc 138(51):16645-16654

Zhou D, Ren L, Li YC, Xu P, Gao Y, Zhang G, Wang W, Mallouk TE, Li L (2017) Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chem Commun 53(83):11465-11468

Zhu P, Chen Y, Shi J (2018) Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 12(4):3780-3795

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 June 2020
Accepted: 14 October 2020
Published: 20 November 2020
Issue date: December 2020

Copyright

© The Author(s) 2020

Acknowledgements

Acknowledgements

This work was financially supported by the Strategic Priority Research Program of CAS (XDB29040101), the National Natural Science Foundation of China (31530026, 31871005, 31900981, 21907043), Chinese Academy of Sciences (YJKYYQ20180048), the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC013), National Key Research and Development Program of China (2017YFA0205501) and Youth Innovation Promotion Association CAS (2019093).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return