Journal Home > Volume 6 , Issue 4

Hepatitis B is caused by hepatitis B virus (HBV), and persistent HBV infection is a global public health problem, with 257 million people as HBV chronic carriers. Viral covalently closed circular DNA (cccDNA) is a key factor to establish persistent infection in infected hepatocytes. Current antiviral therapies have no direct impact on pre-existing cccDNA reservoir, which can be assembled into minichromosome by hijacking host factors. Understanding the mechanisms of epigenetic regulation in cccDNA minichromosome is crucial to develop new therapy on cccDNA, an attractive target for HBV cure. This review summarizes the current advances in epigenetic regulation of cccDNA minichromosome, which might provide clues to novel druggable targets to cure hepatitis B by either silencing or eliminating cccDNA reservoir.


menu
Abstract
Full text
Outline
About this article

Epigenetic regulation of covalently closed circular DNA minichromosome in hepatitis B virus infection

Show Author's information Zhaoning Wang1,2Weiwei Wang2Lanfeng Wang2( )
School of Life Sciences, Shanghai University, Shanghai 200444, China
The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China

Abstract

Hepatitis B is caused by hepatitis B virus (HBV), and persistent HBV infection is a global public health problem, with 257 million people as HBV chronic carriers. Viral covalently closed circular DNA (cccDNA) is a key factor to establish persistent infection in infected hepatocytes. Current antiviral therapies have no direct impact on pre-existing cccDNA reservoir, which can be assembled into minichromosome by hijacking host factors. Understanding the mechanisms of epigenetic regulation in cccDNA minichromosome is crucial to develop new therapy on cccDNA, an attractive target for HBV cure. This review summarizes the current advances in epigenetic regulation of cccDNA minichromosome, which might provide clues to novel druggable targets to cure hepatitis B by either silencing or eliminating cccDNA reservoir.

Keywords: HBV, Epigenetic regulation, cccDNA, Minichromosome

References(126)

Abdul F, Filleton F, Gerossier L, Paturel A, Hall J, Strubin M, Etienne L, (2018) Smc5/6 antagonism by HBx is an evolutionarily conserved function of hepatitis B virus infection in mammals. J Virol 92(16):e00769

Agarwal K, Brunetto M, Seto WK, Lim Y-S, Fung S, Marcellin P, Ahn SH, Izumi N, Chuang WL, Bae H, Sharma M, Janssen HLA, Pan CQ, Çelen MK, Furusyo N, Shalimar D, Yoon KT, Trinh H, Flaherty JF, Gaggar A, Lau AH, Cathcart AL, Lin L, Bhardwaj N, Suri V, Mani Subramanian G, Gane EJ, Buti M, Chan HLY, (2018) 96 weeks treatment of tenofovir alafenamide vs. tenofovir disoproxil fumarate for hepatitis B virus infection. J Hepatol 68(4):672-681

Alarcon V, Hernández S, Rubio L, Alvarez F, Flores Y, Varas-Godoy M, De Ferrari GV, Kann M, Villanueva RA, Loyola A, (2016) The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state. Sci Rep 6(1):25901

Aspinall RJ, Pockros PJ, (2004) The management of side-effects during therapy for hepatitis C. Aliment Pharmacol Ther 20(9):917-929

Balakrishnan L, Milavetz B, (2008) HDAC inhibitors stimulate viral transcription by multiple mechanisms. Virol J 5(1):43

Beck J, Nassal M, (2007) Hepatitis B virus replication. World J Gastroenterol 13(1):48-64

Belloni L, Pollicino T, De Nicola F, Guerrieri F, Raffa G, Fanciulli M, Raimondo G, Levrero M, (2009) Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci 106(47):19975

Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, Petersen J, Raimondo G, Dandri M, Levrero M, (2012) IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Investig 122(2):529-537

Ben-Asher E, Bratosin S, Aloni Y, (1982) Intracellular DNA of the parvovirus minute virus of mice is organized in a minichromosome structure. J Virol 41(3):1044

Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P, (2013) Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther 21(10):1889-1897

Bock C-T, Schranz P, Schröder CH, Zentgraf H, (1994) Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes 8(2):215-229

Bock CT, Schwinn S, Locarnini S, Fyfe J, Manns MP, Trautwein C, Zentgraf H, (2001) Structural organization of the hepatitis B virus minichromosome11Edited by M. Yaniv. J Mol Biol 307(1):183-196

Castán A, Fernández-Calleja V, Hernández P, Krimer DB, Schvartzman JB, Fernández-Nestosa M-J, (2017) Analysis of DNA topology of EBV minichromosomes in HEK 293 cells. PLoS ONE 12(11):e0188172

Chen C, Wu M, Zhang W, Lu W, Zhang M, Zhang Z, Zhang X, Yuan Z, (2016) MicroRNA-939 restricts Hepatitis B virus by targeting Jmjd3-mediated and C/EBPα-coordinated chromatin remodeling. Sci Rep 6(1):35974

Chiappinelli KB, Strissel Pamela L, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote Neal S, Cope Leslie M, Snyder A, Makarov V, Buhu S, Slamon Dennis J, Wolchok Jedd D, Pardoll Drew M, Beckmann Matthias W, Zahnow Cynthia A, Merghoub T, Chan Timothy A, Baylin Stephen B, Strick R, (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162(5):974-986

Chong CK, Cheng CYS, Tsoi SYJ, Huang F-Y, Liu F, Seto W-K, Lai C-L, Yuen M-F, Wong DK-H, (2017) Role of hepatitis B core protein in HBV transcription and recruitment of histone acetyltransferases to cccDNA minichromosome. Antiviral Res 144:1-7

Cougot D, Wu Y, Cairo S, Caramel J, Renard C-A, Lévy L, Buendia MA, Neuveut C, (2007) The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J Biol Chem 282(7):4277-4287

Cradick TJ, Keck K, Bradshaw S, Jamieson AC, McCaffrey AP, (2010) Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther 18(5):947-954

Crémisi C, Chestier A, Yaniv M, (1978) Assembly of SV40 and polyoma minichromosomes during replication. Cold Spring Harb Symp Quant Biol 42:409-416

Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters J-M, (2019) DNA loop extrusion by human cohesin. Science 366(6471):1338

Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, Livingston CM, Niu C, Fletcher SP, Hantz O, Strubin M, (2016) Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531(7594):386-389

Deng J-J, Kong K-YE, Gao W-W, Tang H-MV, Chaudhary V, Cheng Y, Zhou J, Chan C-P, Wong DK-H, Yuen MF, Jin D-Y, (2017) Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription. Biochimica et Biophysica Acta (BBA) 1860(4):491-501

Deuschle K, Kepp G, Jeske H, (2016) Differential methylation of the circular DNA in geminiviral minichromosomes. Virology 499:243-258

Dezhbord M, Lee S, Kim W, Seong BL, Ryu W-S, (2019) Characterization of the molecular events of covalently closed circular DNA synthesis in de novo Hepatitis B virus infection of human hepatoma cells. Antiviral Res 163:11-18

Ely A, Arbuthnot P, (2015) Differing prospects for the future of using gene therapy to treat infections with hepatitis B virus and hepatitis C virus. Discov Med 20(109):137-143

Feng J, Yang G, Liu Y, Gao Y, Zhao M, Bu Y, Yuan H, Yuan Y, Yun H, Sun M, Gao H, Zhang S, Liu Z, Yin M, Song X, Miao Z, Lin Z, Zhang X, (2019) LncRNA PCNAP1 modulates hepatitis B virus replication and enhances tumor growth of liver cancer. Theranostics 9(18):5227-5245

Fontana RJ, (2009) Side effects of long-term oral antiviral therapy for hepatitis B. Hepatology 49(S5):S185-S195

Gao J, Xiong Y, Wang Y, Wang Y, Zheng G, Xu H, (2016) Hepatitis B virus X protein activates Notch signaling by its effects on Notch1 and Notch4 in human hepatocellular carcinoma. Int J Oncol 48(1):329-337

Gao Y, Feng J, Yang G, Zhang S, Liu Y, Bu Y, Sun M, Zhao M, Chen F, Zhang W, Ye L, Zhang X, (2017) Hepatitis B virus X protein–elevated MSL2 modulates hepatitis B virus covalently closed circular DNA by inducing degradation of APOBEC3B to enhance hepatocarcinogenesis. Hepatology 66(5):1413-1429

Gao W, Jia Z, Tian Y, Yang P, Sun H, Wang C, Ding Y, Zhang M, Zhang Y, Yang D, Tian Z, Zhou J, Ruan Z, Wu Y, Ni B, (2019) HBx protein contributes to liver carcinogenesis by H3K4me3 modification through stabilizing WD repeat domain 5 protein. Hepatology 71(5):1678-1695

Garcia-Saez I, Menoni H, Boopathi R, Shukla MS, Soueidan L, Noirclerc-Savoye M, Le Roy A, Skoufias DA, Bednar J, Hamiche A, (2018) Structure of an H1-bound 6-nucleosome array reveals an untwisted two-start chromatin fiber conformation. Mol Cell 72(5):902-915

Gómez-Moreno A, Garaigorta U, (2017) Hepatitis B virus and DNA damage response: interactions and consequences for the infection. Viruses 9(10):304

Gong Q, Chen S, Guo J, Sun H, Zheng G, Liu Q, Ren H, He S, (2011) Chromosome remodeling related to hepatitis B virus replication in HepG2 cells. DNA Cell Biol 30(6):347-354

Guerrieri F, Belloni L, D’Andrea D, Pediconi N, Le Pera L, Testoni B, Scisciani C, Floriot O, Zoulim F, Tramontano A, Levrero M, (2017) Genome-wide identification of direct HBx genomic targets. BMC Genomics 18(1):184

Guo H, Jiang D, Zhou T, Cuconati A, Block TM, Guo J-T, (2007) Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation. J Virol 81(22):12472

Guo Y, Li Y, Mu S, Zhang J, Yan Z, (2009) Evidence that methylation of hepatitis B virus covalently closed circular DNA in liver tissues of patients with chronic hepatitis B modulates HBV replication. J Med Virol 81(7):1177-1183

Guo H, Mao R, Block TM, Guo J-T, (2010) Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J Virol 84(1):387

Guo Y-H, Li Y-N, Zhao J-R, Zhang J, Yan Z, (2011) HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state. Epigenetics 6(6):720-726

Guo H, Xu C, Zhou T, Block TM, Guo J-T, (2012) Characterization of the host factors required for hepadnavirus covalently closed circular (ccc) DNA formation. PLoS ONE 7(8):e43270

Guo F, Zhao Q, Sheraz M, Cheng J, Qi Y, Su Q, Cuconati A, Wei L, Du Y, Li W, Chang J, Guo J-T, (2017) HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways. PLoS Pathog 13(9):e1006658

Halmer L, Vestner B, Gruss C, (1998) Involvement of topoisomerases in the initiation of simian virus 40 minichromosome replication. J Biol Chem 273(52):34792-34798

Hensel KO, Cantner F, Bangert F, Wirth S, Postberg J, (2018) Episomal HBV persistence within transcribed host nuclear chromatin compartments involves HBx. Epigenet Chromatin 11(1):34

Holland L, Downey M, Song X, Gauthier L, Bell-Rogers P, Yankulov K, (2002) Distinct parts of minichromosome maintenance protein 2 associate with histone H3/H4 and RNA polymerase II holoenzyme. Eur J Biochem 269(21):5192-5202

Hu J, Protzer U, Siddiqui A, (2019) Revisit ing hepatitis B virus: challenges of curative therapies. J Virol 93(20):e01032

Ishimi Y, Ichinose S, Omori A, Sato K, Kimura H, (1996) Binding of human minichromosome maintenance proteins with histone H3. J Biol Chem 271(39):24115-24122

Ishimi Y, Komamura Y, You Z, Kimura H, (1998) Biochemical function of mouse minichromosome maintenance 2 protein. J Biol Chem 273(14):8369-8375

Ivanov D, Nasmyth K, (2005) A topological interaction between cohesin rings and a circular minichromosome. Cell 122(6):849-860

Jeong GU, Ahn B-Y, (2019) Aurora kinase A promotes hepatitis B virus replication and expression. Antiviral Res 170:104572

Jin X-L, Hong SK, Kim H, Lee S-K, Yi N-J, Lee K-W, Suh K-S, (2019) Antiviral therapy may decrease HBx, affecting cccDNA and MSL2 in hepatocarcinogenesis. Oncol Lett 18(5):4984-4991

Kallestad L, Woods E, Christensen K, Gefroh A, Balakrishnan L, Milavetz B, (2013) Transcription and replication result in distinct epigenetic marks following repression of early gene expression. Front Genet 4:140

Kim JW, Lee SH, Park YS, Hwang JH, Jeong SH, Kim N, Lee DH, (2011) Replicative activity of hepatitis B virus is negatively associated with methylation of covalently closed circular DNA in advanced hepatitis B virus infection. Intervirology 54(6):316-325

Kim W, Lee S, Son Y, Ko C, Ryu W-S, (2016) DDB1 stimulates viral transcription of hepatitis B virus via HBx-independent mechanisms. J Virol 90(21):9644

Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H, (2019) Human cohesin compacts DNA by loop extrusion. Science 366(6471):1345

Kim E, Kerssemakers J, Shaltiel IA, Haering CH, Dekker C, (2020) DNA-loop extruding condensin complexes can traverse one another. Nature. https://doi.org/10.1038/s41586-020-2067-5

Kinoshita W, Ogura N, Watashi K, Wakita T, (2017) Host factor PRPF31 is involved in cccDNA production in HBV-replicating cells. Biochem Biophys Res Commun 482(4):638-644

Köck J, Rösler C, Zhang J-J, Blum HE, Nassal M, Thoma C, (2010) Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog 6(9):e1001082

Königer C, Wingert I, Marsmann M, Rösler C, Beck J, Nassal M, (2014) Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci 111(40):E4244

Kumala S, Hadj-Sahraoui Y, Rzeszowska-Wolny J, Hancock R, (2012) DNA of a circular minichromosome linearized by restriction enzymes or other reagents is resistant to further cleavage: an influence of chromatin topology on the accessibility of DNA. Nucleic Acids Res 40(19):9417-9428

Lai C-L, Wong D, Ip P, Kopaniszen M, Seto W-K, Fung J, Huang F-Y, Lee B, Cullaro G, Chong CK, Wu R, Cheng C, Yuen J, Ngai V, Yuen M-F, (2017) Reduction of covalently closed circular DNA with long-term nucleos(t)ide analogue treatment in chronic hepatitis B. J Hepatol 66(2):275-281

Landsberg CD, Megger DA, Hotter D, Rückborn MU, Eilbrecht M, Rashidi-Alavijeh J, Howe S, Heinrichs S, Sauter D, Sitek B, Le-Trilling VTK, Trilling M, (2018) A mass spectrometry-based profiling of interactomes of viral DDB1- and cullin ubiquitin ligase-binding proteins reveals NF-κB inhibitory activity of the HIV-2-encoded Vpx. Front Immunol 9:2978

Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M, (2009) Control of cccDNA function in hepatitis B virus infection. J Hepatol 51(3):581-592

Li T, Robert EI, van Breugel PC, Strubin M, Zheng N, (2010) A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol 17(1):105-111

Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJA, Velculescu VE, Wang L, Zhou S, Vogelstein B, Hruban RH, Papadopoulos N, Cai J, Torbenson MS, Kinzler KW, (2011) Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet 43(9):828-829

Li W, Cao F, Li J, Wang Z, Ren Y, Liang Z, Liu P, (2016) Simvastatin exerts anti-hepatitis B virus activity by inhibiting expression of minichromosome maintenance protein 7 in HepG2.2.15 cells. Mol Med Rep 14(6):5334-5342

Liu F, Campagna M, Qi Y, Zhao X, Guo F, Xu C, Li S, Li W, Block TM, Chang J, (2013) Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog 9(9):e1003613

Liu Y, Feng J, Sun M, Yang G, Yuan H, Wang Y, Bu Y, Zhao M, Zhang S, Zhang X, (2019) Long non-coding RNA HULC activates HBV by modulating HBx/STAT3/miR-539/APOBEC3B signaling in HBV-related hepatocellular carcinoma. Cancer Lett 454:158-170

Lucifora J, Arzberger S, Durantel D, Belloni L, Strubin M, Levrero M, Zoulim F, Hantz O, Protzer U, (2011) Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol 55(5):996-1003

Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou W-M, Thasler WE, Hüser N, Durantel D, Liang TJ, Münk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U, (2014) Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 343(6176):1221

Méndez J, Stillman B, (2000) Chromatin association of human origin recognition complex, Cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20(22):8602

Moyo B, Bloom K, Scott T, Ely A, Arbuthnot P, (2018) Advances with using CRISPR/Cas-mediated gene editing to treat infections with hepatitis B virus and hepatitis C virus. Virus Research 244:311-320

Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, Li X, Wu Y, Yu Y, Xiong Y, Su L, (2016) Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep 16(11):2846-2854

Niu C, Livingston CM, Li L, Beran RK, Daffis S, Ramakrishnan D, Burdette D, Peiser L, Salas E, Ramos H, Yu M, Cheng G, Strubin M, Delaney WEIV, Fletcher SP, (2017) The Smc5/6 complex restricts HBV when Localized to ND10 without inducing an innate immune response and is counteracted by the HBV X protein shortly after infection. PLoS ONE 12(1):e0169648

Nkongolo S, Nußbaum L, Lempp FA, Wodrich H, Urban S, Ni Y, (2019) The retinoic acid receptor (RAR) α-specific agonist Am 80 (tamibarotene) and other RAR agonists potently inhibit hepatitis B virus transcription from cccDNA. Antiviral Res 168:146-155

Olszewski N, Hagen G, Guilfoyle TJ, (1982) A transcriptionally active, covalently closed minichromosome of cauliflower mosaic virus DNA isolated from infected turnip leaves. Cell 29(2):395-402

Palumbo GA, Scisciani C, Pediconi N, Lupacchini L, Alfalate D, Guerrieri F, Calvo L, Salerno D, Di Cocco S, Levrero M, Belloni L, (2015) IL6 inhibits HBV transcription by targeting the epigenetic control of the nuclear cccDNA minichromosome. PLoS ONE 10(11):1-14

Papatheodoridis GV, Dimou E, Papadimitropoulos V, (2002) Nucleoside analogues for chronic hepatitis B: antiviral efficacy and viral resistance. Am J Gastroenterol 97(7):1618-1628

Peng JC, Karpen GH, (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9(1):25-35

Peng JC, Karpen GH, (2009) Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet 5(3):e1000435

Pollicino T, Belloni L, Raffa G, Pediconi N, Squadrito G, Raimondo G, Levrero M, (2006) Hepatitis B virus replication is regulated by the Acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 130(3):823-837

Qian G, Hu B, Zhou D, Xuan Y, Bai L, Duan C, (2015) NIRF, a novel ubiquitin ligase, inhibits hepatitis B virus replication through effect on HBV core protein and H3 histones. DNA Cell Biol 34(5):327-332

Ramakrishnan D, Xing W, Beran RK, Chemuru S, Rohrs H, Niedziela-Majka A, Marchand B, Mehra U, Zábranský A, Doležal M, Hubálek M, Pichová I, Gross ML, Kwon HJ, Fletcher SP, (2019) Hepatitis B virus X protein function requires zinc binding. J Virol 93(16):e00250

Reeves R, Gorman CM, Howard B, (1985) Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells. Nucleic Acids Res 13(10):3599-3615

Ren J-H, Tao Y, Zhang Z-Z, Chen W-X, Cai X-F, Chen K, Ko BCB, Song C-L, Ran L-K, Li W-Y, Huang A-L, Chen J, (2014) Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1. J Virol 88(5):2442

Ren J-H, Hu J-L, Cheng S-T, Yu H-B, Wong VKW, Law BYK, Yang Y-F, Huang Y, Liu Y, Chen W-X, Cai X-F, Tang H, Hu Y, Zhang W-L, Liu X, Long Q-X, Zhou L, Tao N-N, Zhou H-Z, Yang Q-X, Ren F, He L, Gong R, Huang A-L, Chen J, (2018) SIRT3 restricts hepatitis B virus transcription and replication through epigenetic regulation of covalently closed circular DNA involving suppressor of variegation 3-9 homolog 1 and SET domain containing 1A histone methyltransferases. Hepatology 68(4):1260-1276

Rivière L, Gerossier L, Ducroux A, Dion S, Deng Q, Michel M-L, Buendia M-A, Hantz O, Neuveut C, (2015) HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J Hepatol 63(5):1093-1102

Rivière L, Quioc-Salomon B, Fallot G, Halgand B, Féray C, Buendia M-A, Neuveut C, (2019) Hepatitis B virus replicating in hepatocellular carcinoma encodes HBx variants with preserved ability to antagonize restriction by Smc5/6. Antiviral Res 172:104618

Saeed U, Kim J, Piracha ZZ, Kwon H, Jung J, Chwae Y-J, Park S, Shin H-J, Kim K, (2019) Parvulin 14 and parvulin 17 bind to HBx and cccDNA and upregulate hepatitis B virus replication from cccDNA to virion in an HBx-dependent manner. J Virol 93(6):e01840

Salerno D, Chiodo L, Alfano V, Floriot O, Cottone G, Paturel A, Pallocca M, Plissonnier M-L, Jeddari S, Belloni L, Zeisel M, Levrero M, Guerrieri F, (2020) Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut. https://doi.org/10.1136/gutjnl-2019-319637:gutjnl-2019-319637

Schalch T, Duda S, Sargent DF, Richmond TJ, (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436(7047):138-141

Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Suzuki T, Ishibashi R, Seimiya T, Tanaka E, Koike K, (2019) Inhibition of HBV transcription from cccDNA With Nitazoxanide by targeting the HBx–DDB1 interaction. Cell Mol Gastroenterol Hepatol 7(2):297-312

Sengupta I, Das D, Singh SP, Chakravarty R, Das C, (2017) Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence. J Biol Chem 292(50):20379-20393

Shamay M, Barak O, Doitsh G, Ben-Dor I, Shaul Y, (2002) Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J Biol Chem 277(12):9982-9988

Shen B, Chen Y, Hu J, Qiao M, Ren J, Hu J, Chen J, Tang N, Huang A, Hu Y, (2020) Hepatitis B virus X protein modulates upregulation of DHX9 to promote viral DNA replication. Cell Microbiol 22(3):e13148

Sheraz M, Cheng J, Tang L, Chang J, Guo J-T, (2019) Cellular DNA topoisomerases are required for the synthesis of hepatitis B virus covalently closed circular DNA. J Virol 93(11):e02230

Shi L, Li S, Shen F, Li H, Qian S, Lee DHS, Wu JZ, Yang W, (2012) Characterization of nucleosome positioning in hepadnaviral covalently closed circular DNA minichromosomes. J Virol 86(18):10059

Shi A, Zhang X, Xiao F, Zhu L, Yan W, Han M, Luo X, Chen T, Ning Q, (2018) CD56bright natural killer cells induce HBsAg reduction via cytolysis and cccDNA decay in long-term entecavir-treated patients switching to peginterferon alfa-2a. J Viral Hepatitis 25(11):1352-1362

Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu R-M, Zhu P, Li G, (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344(6182):376-380

Sundaramoorthy R, (2019) Nucleosome remodelling: structural insights into ATP-dependent remodelling enzymes. Essays Biochem 63(1):45-58

Tak E, Hwang S, Lee HC, Ko G-Y, Ahn C-S, Yoon Y-I, Lim Y-S, Jun D-Y, Kim K-H, Song G-W, Moon D-B, Ryoo B-Y, Kim N, Lee S-G, (2016) Apoptosis of hepatitis B virus-expressing liver tumor cells induced by a high concentration of nucleos(t)ide analogue. Anticancer Res 36(11):6059-6069

Tan G, Xu F, Song H, Yuan Y, Xiao Q, Ma F, Qin FX-F, Cheng G, (2018) Identification of TRIM14 as a type I IFN-stimulated gene controlling hepatitis B virus replication by targeting HBx. Front Immunol 9:1872

Tang Y, Zhang Y, Wang C, Sun Z, Li L, Dong J, Zhou W, (2018) 14-3-3ζ binds to hepatitis B virus protein X and maintains its protein stability in hepatocellular carcinoma cells. Cancer Med 7(11):5543-5553

Tao S, Pan S, Gu C, Wei L, Kang N, Xie Y, Liu J, (2019) Characterization and engineering of broadly reactive monoclonal antibody against hepatitis B virus X protein that blocks its interaction with DDB1. Sci Rep 9(1):20323

Tropberger P, Mercier A, Robinson M, Zhong W, Ganem DE, Holdorf M, (2015) Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc Natl Acad Sci USA 112(42):E5715

van Breugel PC, Robert EI, Mueller H, Decorsiere A, Zoulim F, Hantz O, Strubin M, (2012) Hepatitis B virus X protein stimulates gene expression selectively from extrachromosomal DNA templates. Hepatology 56(6):2116-2124

van Loon N, Miller D, Murnane JP, (1994) Formation of extrachromosomal circular DNA in HeLa cells by nonhomologous recombination. Nucleic Acids Res 22(13):2447-2452

Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D, (2007) SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450(7168):440-444

Varshavsky AJ, Nedospasov SA, Schmatchenko VV, Bakayev VV, Chumackov PM, Georgiev GP, (1977) Compact form of SV40 viral minichromosome is resistant to nuclease: possible implications for chromatin structure. Nucleic Acids Res 4(10):3303-3325

Verhaak RGW, Bafna V, Mischel PS, (2019) Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat Rev Cancer 19(5):283-288

Vivekanandan P, Thomas D, Torbenson M, (2009) Methylation regulates hepatitis B viral protein expression. J Infect Dis 199(9):1286-1291

Vivekanandan P, Daniel HD-J, Kannangai R, Martinez-Murillo F, Torbenson M, (2010) Hepatitis B virus replication induces methylation of both host and viral DNA. J Virol 84(9):4321

Wang F, Zhou H, Xia X, Sun Q, Wang Y, Cheng B, (2010) Activated Notch signaling is required for hepatitis B virus X protein to promote proliferation and survival of human hepatic cells. Cancer Lett 298(1):64-73

Wei Z-Q, Zhang Y-H, Ke C-Z, Chen H-X, Ren P, He Y-L, Hu P, Ma D-Q, Luo J, Meng Z-J, (2017) Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol 23(34):6252-6260

WHO (2017) Global hepatitis report

Wong DK-H, Seto W-K, Fung J, Ip P, Huang F-Y, Lai C-L, Yuen M-F, (2013) Reduction of hepatitis B surface antigen and covalently closed circular DNA by nucleos(t)ide analogues of different potency. Clin Gastroenterol Hepatol 11(8):1004

Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao Y, Li B, Zhang W, Jameson N, Corces MR, Granja JM, Chen X, Coruh C, Abnousi A, Houston J, Ye Z, Hu R, Yu M, Kim H, Law JA, Verhaak RGW, Hu M, Furnari FB, Chang HY, Ren B, Bafna V, Mischel PS, (2019) Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575(7784):699-703

Xie Q, Zhang S, Wang W, Li YM, Du T, Su XL, Wei YQ, Deng HX, (2012) Inhibition of hepatitis B virus gene expression by small interfering RNAs targeting cccDNA and X antigen. Acta Virol 56(01):49-55

Xu W, Ma C, Zhang Q, Zhao R, Hu D, Zhang X, Chen J, Liu F, Wu K, Liu Y, Wu J, (2018) PJA1 coordinates with the SMC5/6 complex to restrict DNA viruses and episomal genes in an interferon-independent manner. J Virol 92(22):e00825

Yang G, Feng J, Liu Y, Zhao M, Yuan Y, Yuan H, Yun H, Sun M, Bu Y, Liu L, Liu Z, Niu J-Q, Yin M, Song X, Miao Z, Lin Z, Zhang X, (2019) HAT1 signaling confers to assembly and epigenetic regulation of HBV cccDNA minichromosome. Theranostics 9(24):7345-7358

Yeh C-T, Chiu H-T, Chu C-M, Liaw Y-F, (1998) G1 phase dependent nuclear localization of relaxed-circular hepatitis B virus DNA and aphidicolin-induced accumulation of covalently closed circular DNA. J Med Virol 55(1):42-50

DOI

Yuan Y, Zhao K, Yao Y, Liu C, Chen Y, Li J, Wang Y, Pei R, Chen J, Hu X, Zhou Y, Wu C, Chen X, (2019) HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. Antiviral Res 172:104619

Zhang Y, Mao R, Yan R, Cai D, Zhang Y, Zhu H, Kang Y, Liu H, Wang J, Qin Y, Huang Y, Guo H, Zhang J, (2014) Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection. PLoS ONE 9(10):e110442

Zhang W, Chen J, Wu M, Zhang X, Zhang M, Yue L, Li Y, Liu J, Li B, Shen F, Wang Y, Bai L, Protzer U, Levrero M, Yuan Z, (2017) PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology 66(2):398-415

Zhang Y, He S, Guo J-J, Peng H, Fan J-H, Li Q-L, (2017) Retinoid X receptor α-dependent HBV minichromosome remodeling and viral replication. Ann Hepatol 16(4):501-509

Zhang D, Wang Y, Zhang H-Y, Jiao F-Z, Zhang W-B, Wang L-W, Zhang H, Gong Z-J, (2019) Histone deacetylases and acetylated histone H3 are involved in the process of hepatitis B virus DNA replication. Life Sci 223:1-8

Zhou T, Guo H, Guo J-T, Cuconati A, Mehta A, Block TM, (2006) Hepatitis B virus e antigen production is dependent upon covalently closed circular (ccc) DNA in HepAD38 cell cultures and may serve as a cccDNA surrogate in antiviral screening assays. Antiviral Res 72(2):116-124

Zhou Z, Hu T, Zhou X, Wildum S, Garcia-Alcalde F, Xu Z, Wu D, Mao Y, Tian X, Zhou Y, Shen F, Zhang Z, Tang G, Najera I, Yang G, Shen HC, Young JAT, Qin N, (2017) Heteroaryldihydropyrimidine (HAP) and sulfamoylbenzamide (SBA) inhibit hepatitis B Virus replication by different molecular mechanisms. Sci Rep 7(1):42374

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 April 2020
Accepted: 25 May 2020
Published: 25 July 2020
Issue date: August 2020

Copyright

© The Author(s) 2020

Acknowledgements

Acknowledgements

We thank Prof. Yu Wei (Institut Pasteur of Shanghai, CAS) for her constructive comment. We apologize to scientists in this field, whose publications were not cited due to space limit. This work was supported by the Strategic Priority Research Program of CAS (XDB29010205), the National Key R&D Program of China (2018YFA0507303, 2018YFC1200701), and National Natural Science Foundation of China (31770816).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return