AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Docking-based inverse virtual screening: methods, applications, and challenges

Xianjin Xu1,2,3,4Marshal Huang1,3Xiaoqin Zou1,2,3,4( )
Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
Informatics Institute, University of Missouri, Columbia, MO 65211, USA
Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
Show Author Information

Graphical Abstract

Abstract

Identifying potential protein targets for a small-compound ligand query is crucial to the process of drug development. However, there are tens of thousands of proteins in human alone, and it is almost impossible to scan all the existing proteins for a query ligand using current experimental methods. Recently, a computational technology called docking-based inverse virtual screening (IVS) has attracted much attention. In docking-based IVS, a panel of proteins is screened by a molecular docking program to identify potential targets for a query ligand. Ever since the first paper describing a docking-based IVS program was published about a decade ago, the approach has been gradually improved and utilized for a variety of purposes in the field of drug discovery. In this article, the methods employed in docking-based IVS are reviewed in detail, including target databases, docking engines, and scoring function methodologies. Several web servers developed for non-expert users are also reviewed. Then, a number of applications are presented according to different research purposes, such as target identification, side effects/toxicity, drug repositioning, drug–target network development, and receptor design. The review concludes by discussing the challenges that docking-based IVS needs to overcome to become a robust tool for pharmaceutical engineering.

References

 

Abagyan R, Totrov M, Kuznetsov D, (1994) ICM-A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation.J Comput Chem 15:488-506

 

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res 25:3389-3402

 

Ashburn TT, Thor KB, (2004) Drug repositioning: identifying and developing new uses for existing drugs.Nat Rev Drug Discov 3:673-683

 

Azzaoui K, Hamon J, Faller B, Whitebread S, Jacoby E, Bender A, Jenkins JL, Urban L, (2007) Modeling promiscuity based on in vitro safety pharmacology profiling data.ChemMedChem 2:874-880

 

Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA, (2001) Electrostatics of nanosystems: application to microtubules and the ribosome.Proc Natl Acad Sci USA 98:10037-10041

 

Bender A, Glen RC, (2004) Molecular similarity: a key technique in molecular informatics.Org Biomol Chem 2:3204-3218

 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE, (2000) The protein data bank.Nucleic Acids Res 28:235-242

 

Bohm HJ, (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors.J Comput Aided Mol Des 6:61-78

 

Bohm HJ, (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein–ligand complex of known three-dimensional structure.J Comput Aided Mol Des 8:243-256

 

Bohm HJ, (1998) Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs.J Comput Aided Mol Des 12:309-323

 

Brooijmans N, Kuntz ID, (2003) Molecular recognition and docking algorithms.Annu Rev Biophys Biomol Struct 32:335-373

 

Bullock C, Cornia N, Jacob R, Remm A, Peavey T, Weekes K, Mallory C, Oxford JT, McDougal OM, Andersen TL, (2013) DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.J Chem Inf Model 53:2161-2170

 

Calvaresi M, Zerbetto F, (2010) Baiting proteins with C60.ACS Nano 4:2283-2299

 

Chang DT, Oyang YJ, Lin JH, (2005) MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm.Nucleic Acids Res 33:W233-W238

 

Chen SJ, Ren JL, (2014) Identification of a potential anticancer target of danshensu by inverse docking.Asian Pac J Cancer Prev 15:111-116

 

Chen YZ, Ung CY, (2001) Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand–protein inverse docking approach.J Mol Graph Model 20:199-218

 

Chen YZ, Zhi DG, (2001) Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule.Proteins 43:217-226

 

Chen X, Ji ZL, Chen YZ, (2002) TTD: therapeutic target database.Nucleic Acids Res 30:412-415

 

Cho AE, Guallar V, Berne BJ, Friesner R, (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach.J Comput Chem 26:915-931

 

DesJarlais RL, Sheridan RP, Dixon JS, Kuntz ID, Venkataraghavan R, (1986) Docking flexible ligands to macromolecular receptors by molecular shape.J Med Chem 29:2149-2153

 

Do QT, Bernard P, (2004) Pharmacognosy and reverse pharmacognosy: a new concept for accelerating natural drug discovery.IDrugs 7:1017-1027

 

Do QT, Renimel I, Andre P, Lugnier C, Muller CD, Bernard P, (2005) Reverse pharmacognosy: application of selnergy, a new tool for lead discovery. The example of epsilon-viniferin.Curr Drug Discov Technol 2:161-167

 

Do QT, Lamy C, Renimel I, Sauvan N, André P, Himbert F, Morin-Allory L, Bernard P, (2007) Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin.Planta Med 73:1235-1240

 

Ewing TJ, Makino S, Skillman AG, Kuntz ID, (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases.J Comput Aided Mol Des 15:411-428

 

Feng LX, Jing CJ, Tang KL, Tao L, Cao ZW, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA, (2011) Clarifying the signal network of salvianolic acid B using proteomic assay and bioinformatic analysis.Proteomics 11:1473-1485

 

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS, (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J Med Chem 47:1739-1749

 

Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, Zhu W, Chen K, Wang X, Jiang H, (2008) PDTD: a web-accessible protein database for drug target identification.BMC Bioinform 9:104

 

Grant JA, Pickup BT, Nicholls A, (2001) A smooth permittivity function for Poisson-Boltzmann solvation methods.J Comput Chem 22:608-640

 

Grinter SZ, Zou X, (2014) A Bayesian statistical approach of improving knowledge-based scoring functions for protein–ligand interactions.J Comput Chem 35:932-943

 

Grinter SZ, Zou X, (2014) Challenges, applications, and recent advances of protein–ligand docking in structure-based drug design.Molecules 19:10150-10176

 

Grinter SZ, Liang Y, Huang SY, Hyder SM, Zou X, (2011) An inverse docking approach for identifying new potential anti-cancer targets.J Mol Graph Model 29:795-799

 

Grinter SZ, Yan C, Huang SY, Jiang L, Zou X, (2013) Automated large-scale file preparation, docking, and scoring: evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource Benchmark.J Chem Inf Model 53:1905-1914

 

Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, Ahmed J, Urdiales EG, Gewiess A, Jensen LJ, Schneider R, Skoblo R, Russell RB, Bourne PE, Bork P, Preissner R, (2008) SuperTarget and Matador: resources for exploring drug–target relationships.Nucleic Acids Res 36:D919-D922

 

Hawkins GD, Cramer CJ, Truhlar DG, (1995) Pairwise solute descreening of solute charges from a dielectric medium.Chem Phys Lett 246:122-129

 

Huang SY, Zou X, (2006) An iterative knowledge-based scoring function to predict protein–ligand interactions: I. Derivation of interaction potentials.J Comput Chem 27:1866-1875

 

Huang SY, Zou X, (2006) An iterative knowledge-based scoring function to predict protein–ligand interactions: II. Validation of the scoring function.J Comput Chem 27:1876-1882

 

Huang SY, Zou X, (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.Proteins 66:399-421

 

Huang SY, Zou X, (2007) Efficient molecular docking of NMR structures: application to HIV-1 protease.Protein Sci 16:43-51

 

Huang SY, Zou X, (2010) Advances and challenges in protein–ligand docking.Int J Mol Sci 11:3016-3034

 

Huang SY, Grinter SZ, Zou X, (2010) Scoring functions and their evaluation methods for protein–ligand docking: recent advances and future directions.Phys Chem Chem Phys 12:12899-12908

 

Huey R, Morris GM, Olson AJ, Goodsell DS, (2007) A semiempirical free energy force field with charge-based desolvation.J Comput Chem 28:1145-1152

 

Ji ZL, Han LY, Yap CW, Sun LZ, Chen X, Chen YZ, (2003) Drug Adverse Reaction Target Database (DART): proteins related to adverse drug reactions.Drug Saf 26:685-690

 

Ji ZL, Wang Y, Yu L, Han LY, Zheng CJ, Chen YZ, (2006) In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction.Toxicol Lett 164:104-112

 

Ji HF, Li XJ, Zhang HY, (2009) Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia?.EMBO Rep 10:194-200

 

Jiang F, Kim SH, (1991) “Soft docking”: matching of molecular surface cubes.J Mol Biol 219:79-102

 

Jones G, Willett P, Glen RC, Leach AR, Taylor R, (1997) Development and validation of a genetic algorithm for flexible docking.J Mol Biol 267:727-748

 

Kaufmann SH, (2008) Paul Ehrlich: founder of chemotherapy.Nat Rev Drug Discov 7:373

 

Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D, (2006) sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank.J Chem Inf Model 46:717-727

 

Klabunde T, Hessler G, (2002) Drug design strategies for targeting G-protein-coupled receptors.ChemBioChem 3:928-944

 

Knegtel RM, Kuntz ID, Oshiro CM, (1997) Molecular docking to ensembles of protein structures.J Mol Biol 266:424-440

 

Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TEIII, (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models.Acc Chem Res 33:889-897

 

Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S, Young MP, Jenkins JL, Glick M, Glen RC, Bender A, (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications.J Proteomics 74:2554-2574

 

Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, Rizzo RC, Case DA, James TL, Kuntz ID, (2009) DOCK 6: combining techniques to model RNA-small molecule complexes.RNA 15:1219-1230

 

Lauro G, Romano A, Riccio R, Bifulco G, (2011) Inverse virtual screening of antitumor targets: pilot study on a small database of natural bioactive compounds.J Nat Prod 74:1401-1407

 

Lauro G, Masullo M, Piacente S, Riccio R, Bifulco G, (2012) Inverse virtual screening allows the discovery of the biological activity of natural compounds.Bioorg Med Chem 20:3596-3602

 

Leach AR, (1994) Ligand docking to proteins with discrete side-chain flexibility.J Mol Biol 235:345-356

 

Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J, Wang X, Jiang H, (2006) TarFisDock: a web server for identifying drug targets with docking approach.Nucleic Acids Res 34:W219-W224

 

Li YY, An J, Jones SJ, (2011) A computational approach to finding novel targets for existing drugs.PLoS Comput Biol 7:e1002139

 

Liu M, Wang S, (1999) MCDOCK: a Monte Carlo simulation approach to the molecular docking problem.J Comput Aided Mol Des 13:435-451

 

Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK, (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities.Nucleic Acids Res 35:D198-D201

 

Liu H, Qing S, Zhang J, Fu W, (2010) Evaluation of various inverse docking schemes in multiple targets identification.J Mol Graph Model 29:326-330

 

Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H, (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach.Nucleic Acids Res 38:W609-W614

 

Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L, (2011) DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical–protein interactome.Nucleic Acids Res 39:W492-W498

 

Ma C, Kang H, Liu Q, Zhu R, Cao Z, (2011) Insight into potential toxicity mechanisms of melamine: an in silico study.Toxicology 283:96-100

 

Ma DL, Chan DS, Leung CH, (2013) Drug repositioning by structure-based virtual screening.Chem Soc Rev 42:2130-2141

 

Macchiarulo A, Nobeli I, Thornton JM, (2004) Ligand selectivity and competition between enzymes in silico.Nat Biotechnol 22:1039-1045

 

Meng EC, Shoichet BK, Kuntz ID, (1992) Automated docking with grid-based energy evaluation.J Comput Chem 13:505-524

 

Mestres J, Gregori-Puigjane E, Valverde S, Sole RV, (2008) Data completeness—the Achilles heel of drug–target networks.Nat Biotechnol 26:983-984

 

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ, (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function.J Comput Chem 19:1639-1662

 

Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC, (2006) Development and validation of a modular, extensible docking program: DOCK 5.J Comput Aided Mol Des 20:601-619

 

Muegge I, (2006) PMF scoring revisited.J Med Chem 49:5895-5902

 

Muegge I, Martin YC, (1999) A general and fast scoring function for protein–ligand interactions: a simplified potential approach.J Med Chem 42:791-804

 

Muller P, Lena G, Boilard E, Bezzine S, Lambeau G, Guichard G, Rognan D, (2006) In silico-guided target identification of a scaffold-focused library: 1,3,5-triazepan-2,6-diones as novel phospholipase A2 inhibitors.J Med Chem 49:6768-6778

 

Nwaka S, Hudson A, (2006) Innovative lead discovery strategies for tropical diseases.Nat Rev Drug Discov 5:941-955

 

Overington JP, Al-Lazikani B, Hopkins AL, (2006) How many drug targets are there?.Nat Rev Drug Discov 5:993-996

 

Qiu D, Shenkin PS, Hollinger FP, Still WC, (1997) The GB/SA continuum model for solvation. a fast analytical method for the calculation of approximate born radii.J Phys Chem A 101:3005-3014

 

Rarey M, Kramer B, Lengauer T, Klebe G, (1996) A fast flexible docking method using an incremental construction algorithm.J Mol Biol 261:470-489

 

Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B, (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects.J Comput Chem 23:128-137

 

Rockey WM, Elcock AH, (2002) Progress toward virtual screening for drug side effects.Proteins 48:664-671

 

Rognan D, (2010) Structure-based approaches to target fishing and ligand profiling.Mol Inform 29:176-187

 

Sali A, Blundell TL, (1993) Comparative protein modelling by satisfaction of spatial restraints.J Mol Biol 234:779-815

 

Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung SS, Woodcock HL, Guida WC, Brooks WH, (2012) Virtual target screening: validation using kinase inhibitors.J Chem Inf Model 52:2192-2203

 

Schomburg KT, Rarey M, (2014) Benchmark data sets for structure-based computational target prediction.J Chem Inf Model 54:2261-2274

 

Sherman W, Day T, Jacobson MP, Friesner RA, Farid R, (2006) Novel procedure for modeling ligand/receptor induced fit effects.J Med Chem 49:534-553

 

Slon-Usakiewicz JJ, Pasternak A, Reid N, Toledo-Sherman LM, (2004) New targets for an old drug: II. Hypoxanthine-guanine amidophosphoribosyltransferase as a new pharmacodynamic target of methotrexate.Clin Proteom 1:227-234

 

Sousa SF, Fernandes PA, Ramos MJ, (2006) Protein–ligand docking: current status and future challenges.Proteins 65:15-26

 

Sousa SF, Ribeiro AJ, Coimbra JT, Neves RP, Martins SA, Moorthy NS, Fernandes PA, Ramos MJ, (2013) Protein–ligand docking in the new millennium—a retrospective of 10 years in the field.Curr Med Chem 20:2296-2314

 

Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA, (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate–DNA helices.J Am Chem Soc 120:9401-9409

 

Steffen A, Thiele C, Tietze S, Strassnig C, Kämper A, Lengauer T, Wenz G, Apostolakis J, (2007) Improved cyclodextrin-based receptors for camptothecin by inverse virtual screening.Chem Eur J 13:6801-6809

 

Still WC, Tempczyk A, Hawley RC, Hendrickson T, (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics.J Am Chem Soc 112:6127-6129

 

Thomas PD, Dill KA, (1996) An iterative method for extracting energy-like quantities from protein structures.Proc Natl Acad Sci USA 93:11628-11633

 

Tietze S, Apostolakis J, (2007) GlamDock: development and validation of a new docking tool on several thousand protein–ligand complexes.J Chem Inf Model 47:1657-1672

 

Toledo-Sherman LM, Desouza L, Hosfield CM, Liao L, Boutillier K, Taylor P, Climie S, McBroom-Cerajewski L, Moran MF, (2004) New targets for an old drug: a chemical proteomics approach to unraveling the molecular mechanism of action of methotrexate.Clin Proteom 1:45-67

 

Trott O, Olson AJ, (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J Comput Chem 31:455-461

 

Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM, (2013) Molecular signatures of G-protein-coupled receptors.Nature 494:185-194

 

Wang W, Donini O, Reyes CM, Kollman PA, (2001) Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein, and protein–nucleic acid noncovalent interactions.Annu Rev Biophys Biomol Struct 30:211-243

 

Wang R, Lai L, Wang S, (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction.J Comput Aided Mol Des 16:11-26

 

Wang JC, Lin JH, Chen CM, Perryman AL, Olson AJ, (2011) Robust scoring functions for protein–ligand interactions with quantum chemical charge models.J Chem Inf Model 51:2528-2537

 

Wang JC, Chu PY, Chen CM, Lin JH, (2012) idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach.Nucleic Acids Res 40:W393-W399

 

Wang W, Zhou X, He W, Fan Y, Chen Y, Chen X, (2012) The interprotein scoring noises in glide docking scores.Proteins 80:169-183

 

Willett P, Barnard JM, Downs GM, (1998) Chemical similarity searching.J Chem Inf Comput Sci 38:983-996

 

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J, (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration.Nucleic Acids Res 34:D668-D672

 

Xie L, Xie L, Bourne PE, (2011) Structure-based systems biology for analyzing off-target binding.Curr Opin Struct Biol 21:189-199

 

Xu M, Lill MA, (2013) Induced fit docking, and the use of QM/MM methods in docking.Drug Discov Today Technol 10:e411-e418

 

Xu X-J, Su J-G, Liu B, Li C-H, Tan J-J, Zhang X-Y, Chen W-Z, Wang C-X, (2013) Reverse virtual screening on persistent organic pollutants 4,4′-DDE and CB-153.Acta Phys Chim Sin 29:2276-2285

 

Xu X, Ma Z, Sun H, Zou X, (2016) SM-TF: a structural database of small molecule–transcription factor complexes.J Comput Chem 37:1559-1564

 
Yan C, Zou X (2016) An ensemble docking suite for molecular docking, scoring and in silico screening. In: Zhang W (ed) Methods in pharmacology and toxicology. Springer, New York, pp 153–166
DOI
 

Yan C, Grinter SZ, Merideth BR, Ma Z, Zou X, (2016) Iterative knowledge-based scoring functions derived from rigid and flexible decoy structures: evaluation with the 2013 and 2014 CSAR benchmarks.J Chem Inf Model 56:1013-1021

 

Yang CY, Wang R, Wang S, (2006) M-score: a knowledge-based potential scoring function accounting for protein atom mobility.J Med Chem 49:5903-5911

 

Yang L, Luo H, Chen J, Xing Q, He L, (2009) SePreSA: a server for the prediction of populations susceptible to serious adverse drug reactions implementing the methodology of a chemical–protein interactome.Nucleic Acids Res 37:W406-W412

 

Yang L, Wang K, Chen J, Jegga AG, Luo H, Shi L, Wan C, Guo X, Qin S, He G, Feng G, He L, (2011) Exploring off-targets and off-systems for adverse drug reactions via chemical–protein interactome–clozapine-induced agranulocytosis as a case study.PLoS Comput Biol 7:e1002016

 

Yang H, Qin C, Li YH, Tao L, Zhou J, Yu CY, Xu F, Chen Z, Zhu F, Chen Y, (2016) Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information.Nucleic Acids Res 44:D1069-D1074

 

Yue QX, Cao ZW, Guan SH, Liu XH, Tao L, Wu WY, Li YX, Yang PY, Liu X, Guo DA, (2008) Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network.Mol Cell Proteom 7:949-961

 

Zahler S, Tietze S, Totzke F, Kubbutat M, Meijer L, Vollmar AM, Apostolakis J, (2007) Inverse in silico screening for identification of kinase inhibitor targets.Chem Biol 14:1207-1214

 

Zhao J, Yang P, Li F, Tao L, Ding H, Rui Y, Cao Z, Zhang W, (2012) Therapeutic effects of astragaloside IV on myocardial injuries: multi-target identification and network analysis.PLoS One 7:e44938

Biophysics Reports
Pages 1-16
Cite this article:
Xu X, Huang M, Zou X. Docking-based inverse virtual screening: methods, applications, and challenges. Biophysics Reports, 2018, 4(1): 1-16. https://doi.org/10.1007/s41048-017-0045-8

392

Views

21

Downloads

102

Crossref

0

Scopus

0

CSCD

Received: 27 July 2017
Accepted: 08 September 2017
Published: 01 February 2018
© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return