Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Black phosphorus (BP) is a new class of two-dimensional (2D) layered material, which shows the unanticipated characteristics in many aspects including electronics, transistors, sensors, energy storage, batteries, photocatalysis, and other applications due to its high charge carrier mobility, tunable direct bandgap, and unique in-plane anisotropic structure. In addition, BP has drawn tremendous attention in the field of tribology due to the low shear strength, the layered structure, and the weak connected force between the layers by van der Waals interaction. In recent years, many significant progresses have been made in experimental studies on BP materials as solid lubricants or lubrication additives. This work offers a review of researching regarding the tribological properties of BP. Moreover, the lubrication mechanisms of BP as the lubrication additive including the formation of the tribo-film, micro-bearing effect, and self-repair performance are also summarized. Finally, the current challenges and prospects of BP material as lubricant are proposed.
491
Views
34
Downloads
5
Crossref
6
Web of Science
6
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.