74
Views
3
Downloads
0
Crossref
0
WoS
0
Scopus
0
CSCD
Impact–sliding caused by random vibrations between tubes and supports can affect the operation of heat exchangers. In addition, a corrosive environment can cause damage, accelerating the synergism of corrosion and wear. Therefore, the focus of this work was the impact–sliding fretting tribocorrosion behavior of 316L heat exchanger tubes at different halide concentrations. A device system incorporating the in situ electrochemical measurements of impact–sliding fretting corrosion wear was constructed, and experiments on 316L heat exchanger tubes in sodium chloride (NaCl) solution with different concentrations (0.0, 0.1, 0.5, 1.0, 3.5, and 5.0 wt%) were carried out. The synergism between wear and corrosion was also calculated and analyzed. The wear and damage mechanisms were elucidated by correlating the corrosion–wear synergism, morphologies, and material loss rates. The results indicated that the stable wear stage occurred at approximately 9–12 h, after which the corrosion current increased with the expansion of the wear area. As the halide concentration increased, the scale of damage on the wear scars gradually decreased, changing from being dominated by cracks, delaminations, and grooves to being dominated by scratches, microgrooves, and holes. There was an obvious positive synergism between wear and corrosion. The material loss was dominated by pure mechanical wear and wear enhanced by corrosion, but corrosion enhanced by wear contributed more than tangential sliding fretting corrosion. The total mass loss increased gradually in the range of 0.0–0.5 wt% and decreased in the range of 0.5–5.0 wt%. Large-scale damage enhanced by corrosivity and small-scale damage reduced by lubricity dominated the material loss at low and high concentrations, respectively.
Impact–sliding caused by random vibrations between tubes and supports can affect the operation of heat exchangers. In addition, a corrosive environment can cause damage, accelerating the synergism of corrosion and wear. Therefore, the focus of this work was the impact–sliding fretting tribocorrosion behavior of 316L heat exchanger tubes at different halide concentrations. A device system incorporating the in situ electrochemical measurements of impact–sliding fretting corrosion wear was constructed, and experiments on 316L heat exchanger tubes in sodium chloride (NaCl) solution with different concentrations (0.0, 0.1, 0.5, 1.0, 3.5, and 5.0 wt%) were carried out. The synergism between wear and corrosion was also calculated and analyzed. The wear and damage mechanisms were elucidated by correlating the corrosion–wear synergism, morphologies, and material loss rates. The results indicated that the stable wear stage occurred at approximately 9–12 h, after which the corrosion current increased with the expansion of the wear area. As the halide concentration increased, the scale of damage on the wear scars gradually decreased, changing from being dominated by cracks, delaminations, and grooves to being dominated by scratches, microgrooves, and holes. There was an obvious positive synergism between wear and corrosion. The material loss was dominated by pure mechanical wear and wear enhanced by corrosion, but corrosion enhanced by wear contributed more than tangential sliding fretting corrosion. The total mass loss increased gradually in the range of 0.0–0.5 wt% and decreased in the range of 0.5–5.0 wt%. Large-scale damage enhanced by corrosivity and small-scale damage reduced by lubricity dominated the material loss at low and high concentrations, respectively.
The work was funded by the Materials Ageing Institute. Thanks to Dr. Kai GUO from School of Environmental and Chemical Engineering, Yanshan University, China, for his technical support.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.