145
Views
10
Downloads
0
Crossref
0
WoS
0
Scopus
0
CSCD
Numerous tribological applications, wherein the use of liquid lubricants is infeasible, require adequate dry lubrication. Despite the use of polymers as an effective solution for dry sliding tribological applications, their poor wear resistance prevents the utilization in harsh industrial environment. Different methods are typically implemented to tackle the poor wear performance of polymers, however sacrificing some of their mechanical/tribological properties. Herein, we discussed the introduction of a novel additive, namely microencapsulated phase change material (MPCM) into an advanced polymeric coating. Specifically, paraffin was encapsulated into melamine-based resin, and the capsules were dispersed in an aromatic thermosetting co-polyester (ATSP) coating. We found that the MPCM-filled composite exhibited a unique tribological behavior, manifested as "zero wear", and a super-low coefficient of friction (COF) of 0.05. The developed composite outperformed the state-of-the-art polytetrafluoroethylene (PTFE)-filled coatings, under the experimental conditions examined herein.
Numerous tribological applications, wherein the use of liquid lubricants is infeasible, require adequate dry lubrication. Despite the use of polymers as an effective solution for dry sliding tribological applications, their poor wear resistance prevents the utilization in harsh industrial environment. Different methods are typically implemented to tackle the poor wear performance of polymers, however sacrificing some of their mechanical/tribological properties. Herein, we discussed the introduction of a novel additive, namely microencapsulated phase change material (MPCM) into an advanced polymeric coating. Specifically, paraffin was encapsulated into melamine-based resin, and the capsules were dispersed in an aromatic thermosetting co-polyester (ATSP) coating. We found that the MPCM-filled composite exhibited a unique tribological behavior, manifested as "zero wear", and a super-low coefficient of friction (COF) of 0.05. The developed composite outperformed the state-of-the-art polytetrafluoroethylene (PTFE)-filled coatings, under the experimental conditions examined herein.
Fundings of the present study were provided by Texas A&M University X-Grant and by Strategic Transformative Research Program (STRP) Grant, College of Science. The authors also acknowledge the use of the Texas A&M Materials Characterization Core Facility (RRID: SCR_022202). We gratefully acknowledge the financial support from the Robert A. WELCH Foundation through the W.T. Doherty-WELCH Chair in Chemistry (A-0001). Mariela VAZQUEZ appreciates the support by the National Science Foundation Graduate Research Fellowship Program (Grant No. M1703014). Insightful discussions with Ms. Yidan SHEN are also greatly appreciated.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.