References(102)
[1]
Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22): 2471–2474 (1985)
[2]
Tambe N S, Bhushan B. Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16(10): 2309–2324 (2005)
[3]
Wu B, Niu Q. Nonlinear landau-zener tunneling. Phys Rev A 61(2): 023402 (2000)
[4]
Zenesini A, Lignier H, Tayebirad G, Radogostowicz J, Ciampini D, Mannella R, Wimberger S, Morsch O, Arimondo E. Time-resolved measurement of Landau-Zener tunneling in periodic potentials. Phys Rev Lett 103(9): 090402 (2009)
[5]
Zanca T, Pellegrini F, Santoro GE, Tosatti E. Frictional lubricity enhanced by quantum mechanics. Proc Natl Acad Sci USA 115(14): 3547–3550 (2018)
[6]
Krim J, Solina D H, Chiarello R. Nanotribology of a Kr monolayer: A quartz-crystal microbalance study of atomic-scale friction. Phys Rev Lett 66(2): 181–184 (1991)
[7]
Robbins M O, Krim J. Energy dissipation in interfacial friction. MRS Bull23(6): 23–26 (1998)
[8]
Smith ED, Robbins MO, Cieplak M. Friction on adsorbed monolayers. Phys Rev B Condens Matter 54(11): 8252–8260 (1996)
[9]
Matsukawa H, Fukuyama H. Theoretical study of friction: One-dimensional clean surfaces. Phys Rev B Condens Matter 49(24): 17286–17292 (1994)
[10]
Hirano M, Shinjo K, Kaneko R, Murata Y. Observation of superlubricity by scanning tunneling microscopy. Phys Rev Lett 78(8): 1448–1451 (1997)
[11]
Popov V L. Superslipperiness at low temperatures: Quantum mechanical aspects of solid state friction. Phys Rev Lett 83(8): 1632–1635 (1999)
[12]
Lifshitz E M, Pitaevskii L P. Statistical Physics: Theory of the Condensed State Vol. 9. Elsevier, 2013.
[13]
Dayo A, Alnasrallah W, Krim J. Superconductivity-dependent sliding friction. Phys Rev Lett 80(8): 1690–1693 (1998)
[14]
Renner R L, Rutledge J E, Taborek P. Quartz microbalance studies of superconductivity-dependent sliding friction. Phys Rev Lett 83(6): 1261 (1999)
[15]
Krim J. Krim replies. Phys Rev Lett 83(6): 1262 (1999)
[16]
Novotný T, Velický B. Electronic sliding friction of atoms physisorbed at superconductor surface. Phys Rev Lett 83(20): 4112–4115 (1999)
[17]
Sokoloff J B, Tomassone M S, Widom A. Strongly temperature dependent sliding friction for a superconducting interface. Phys Rev Lett 84(3): 515–517 (2000)
[18]
Persson B N J. Electronic friction on a superconductor surface. Solid State Commun 115(3): 145–148 (2000)
[19]
Fois G, Bruschi L, D’Apolito L, Mistura G, Torre B, Buatier de Mongeot F, Boragno C, Buzio R, Valbusa U. Low-temperature static friction of N2monolayers on Pb(111). J Phys: Condens Matter 19(30): 305013 (2007)
[20]
Kisiel M, Gnecco E, Gysin U, Marot L, Rast S, Meyer E. Suppression of electronic friction on Nb films in the superconducting state. Nature Mater 10(2): 119–122 (2011)
[21]
Pendry J B. Shearing the vacuum - quantum friction. J Phys: Condens Matter 9(47): 10301–10320 (1997)
[22]
Volokitin A I, Persson B J. Theory of friction: The contribution from a fluctuating electromagnetic field. J Phys: Condens Matter 11(2): 345–359 (1999)
[23]
Volokitin A I, Persson B N J. Near-field radiative heat transfer and noncontact friction. Rev Mod Phys 79(4): 1291–1329 (2007)
[24]
Volokitin A I, Persson B N J. Theory of the interaction forces and the radiative heat transfer between moving bodies. Phys Rev B 78(15): 155437 (2008)
[25]
Volokitin A I, Persson B N. Quantum friction. Phys Rev Lett 106(9): 094502 (2011)
[26]
Silveirinha M G. Theory of quantum friction. New J Phys 16(6): 063011 (2014)
[27]
Klatt J, Farías M B, Dalvit D A R, Buhmann S Y. Quantum friction in arbitrarily directed motion. Phys Rev A 95(5): 052510 (2017)
[28]
Belén Farías M, Fosco C D, Lombardo F C, Mazzitelli F D, Rubio López A E. Functional approach to quantum friction: Effective action and dissipative force. Phys Rev D 91(10): 105020 (2015)
[29]
Farias M B, Fosco C D, Lombardo F C, Mazzitelli F D. Quantum friction between graphene sheets. Phys Rev D 95(6): 065012 (2017)
[30]
Farias M B, Kort-Kamp W J M, Dalvit D A R. Quantum friction in two-dimensional topological materials. Phys Rev B 97(16): 161407 (2018)
[31]
Viotti L, Belén Farías M, Villar P I, Lombardo F C. Thermal corrections to quantum friction and decoherence: A closed-time-path approach to atom-surface interaction. Phys Rev D 99(10): 105005 (2019)
[32]
Farías M B, Fosco C, Lombardo F C, Mazzitelli F D. Motion induced radiation and quantum friction for a moving atom. Phys Rev D 100(3): 036013 (2019)
[33]
Farías M B, Lombardo F C, Soba A, Villar P I, Decca R S. Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase. Npj Quantum Inf 6: 25 (2020)
[34]
Gysin U, Rast S, Kisiel M, Werle C, Meyer E. Low temperature ultrahigh vacuum noncontact atomic force microscope in the pendulum geometry. Rev Sci Instrum 82(2): 023705 (2011)
[35]
Kisiel M, Samadashvili M, Gysin U, Meyer E. Non-contact friction. In Noncontact Atomic Force Microscopy Volume 3. Springer, 2015: 93–110.
[36]
Krylov S Y, Dijksman J A, van Loo W A, Frenken J W. Stick-slip motion in spite of a slippery contact: Do we get what we see in atomic friction? Phys Rev Lett 97(16): 166103 (2006)
[37]
Krylov S Y, Frenken J W M. Thermal contact delocalization in atomic scale friction: A multitude of friction regimes. New J Phys 9(10): 398 (2007)
[38]
Rabinowicz E. Friction and Wear of Materials 2nd ed. John Wiley & Sons, inc., 1995.
[39]
Berman A, Drummond C, Israelachvili J. Amontons' law at the molecular level. Tribol Lett 4(2): 95–101 (1998)
[40]
Krim J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv Phys 61(3): 155–323 (2012)
[41]
Krim J. Resource letter: FMMLS-1: Friction at macroscopic and microscopic length scales. Am J Phys 70(9): 890–897 (2002)
[42]
Prandtl, L. A conceptual model to the kinetic theory of solid bodies. Z Angew Math Mech 8: 85–106 (1928) (In German).
[43]
Popov V L, Gray J A T. Prandtl-tomlinson model: History and applications in friction, plasticity, and nanotechnologies. Z Angew Math Mech 92(9): 683–708 (2012)
[44]
Tabor D. Friction as a dissipative process. In Fundamentals of Friction: Macroscopic and Microscopic Processes. Dordrecht: Springer Netherlands, 1992: 3–24.
[45]
Tomlinson G A. CVI.A molecular theory of friction. Lond Edinb Dublin Philos Mag J Sci 7(46): 905–939 (1929)
[46]
Brilliantov N V, Budkov Y A, Seidel C. Theoretical and numerical analysis of nano-actuators based on grafted polyelectrolytes in an electric field. Faraday Discuss 199: 487–510 (2017)
[47]
Brilliantov N V, Budkov Y A, Seidel C. Generation of mechanical force by grafted polyelectrolytes in an electric field: Application to polyelectrolyte-based nano-devices. Philos Trans Royal Soc A Math Phys Eng Sci 374(2080): 20160143 (2016)
[48]
Johnson K L, Kendall K, Roberts A. Surface energy and the contact of elastic solids. Proc Royal Soc London A Math Phys Sci 324(1558): 301–313 (1971)
[49]
Popov V L. A note by K. L. Johnson on the history of the JKR theory. Tribol Lett 69(4): 1–3 (2021)
[50]
Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2): 314–326 (1975)
[51]
Maugis D. Adhesion of spheres: The JKR-DMT transition using a dugdale model. J Colloid Interface Sci 150(1): 243–269 (1992)
[52]
Lee C G, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385–388 (2008)
[53]
Lee J U, Yoon D, Cheong H. Estimation of young’s modulus of graphene by Raman spectroscopy. Nano Lett 12(9): 4444–4448 (2012)
[54]
Clark N, Oikonomou A, Vijayaraghavan A. Ultrafast quantitative nanomechanical mapping of suspended graphene. Phys Status Solidi B 250(12): 2672–2677 (2013)
[55]
Zhang G P, Wei Z X, Ferrell R E. Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation. Appl Clay Sci 43(2): 271–281 (2009)
[56]
Young T J, Monclus M A, Burnett T L, Broughton W R, Ogin S L, Smith P A. The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas Sci Technol 22(12): 125703 (2011)
[57]
Landau L D, Lifshitz E M. Course of Theoretical Physics Vol 7: Theory and Elasticity. Pergamon press, 1959.
[58]
Puttock M J, Thwaite E G. Elastic Compression of Spheres and Cylinders at Point and Line Contact. Melbourne: Commonwealth Scientific and Industrial Research Organization, 1969.
[59]
Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Frictional characteristics of atomically thin sheets. Science 328(5974): 76–80 (2010)
[60]
Li Q Y, Lee C G, Carpick R W, Hone J. Substrate effect on thickness-dependent friction on graphene. Phys Stat Sol (b) 247(11–12): 2909–2914 (2010)
[61]
Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R. Friction and dissipation in epitaxial graphene films. Phys Rev Lett 102(8): 086102 (2009)
[62]
Filleter T, Bennewitz R. Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys Rev B 81(15): 155412 (2010)
[63]
Smolyanitsky A, Killgore J P, Tewary V K. Effect of elastic deformation on frictional properties of few-layer graphene. Phys Rev B 85(3): 035412 (2012)
[64]
Dong Y L. Effects of substrate roughness and electron–phonon coupling on thickness-dependent friction of graphene. J Phys D: Appl Phys 47(5): 055305 (2014)
[65]
Mori H. Transport, collective motion, and Brownian motion. Prog Theor Phys 33(3): 423–455 (1965)
[66]
Vanossi A, Manini N, Urbakh M, Zapperi S, Tosatti E. Colloquium: Modeling friction: From nanoscale to mesoscale. Rev Mod Phys 85(2): 529–552 (2013)
[68]
Schneider T, Stoll E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17(3): 1302–1322 (1978)
[69]
Intravaia F, Behunin R, Henkel C, Busch K, Dalvit D. Failure of local thermal equilibrium in quantum friction. Phys Rev Lett 117(10): 100402 (2016)
[70]
Ashcroft N W, Mermin N D. Solid State Physics. New York: Holt, Rinehart and Winston, 1976.
[71]
Morita S, Giessibl F J, Meyer E, Wiesendanger R. Noncontact Atomic Force Microscopy Volume 3. Springer, 2015
[72]
Pitaevskii L, Lifshitz E. Physical Kinetics: Volume 10. Butterworth-Heinemann, 2012.
[73]
Lynch R. The quantum phase problem: A critical review. Phys Rep 256(6): 367–436 (1995)
[74]
Hong C K, Mandel L. Generation of higher-order squeezing of quantum electromagnetic fields. Phys Rev A Gen Phys 32(2): 974–982 (1985)
[75]
Feynman R P. Statistical Mechanics: A Set of Lectures. Chapman and Hall/CRC, 2018.
[76]
Davydov A S. Quantum Mechanics, Vol. 1. Pergamon Press, 1965.
[77]
Brilliantov N V, Pöschel T. Rolling friction of a viscous sphere on a hard plane. Europhys Lett 42(5): 511–516 (1998)
[78]
Brilliantov NV, Albers N, Spahn F, Pöschel T. Collision dynamics of granular particles with adhesion. Phys Rev E Stat Nonlin Soft Matter Phys 76(5): 051302 (2007)
[79]
Manini N, Braun OM, Tosatti E, Guerra R, Vanossi A. Friction and nonlinear dynamics. J Phys Condens Matter 28(29): 293001 (2016)
[80]
Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A, Zwerger W. Dynamics of the dissipative two-state system. Rev Mod Phys 59(1): 1–85 (1987)
[81]
Gorokhov D A, Fisher D S, Blatter G. Quantum collective creep: A quasiclassical Langevin equation approach. Phys Rev B 66(21): 214203 (2002)
[82]
Krajewski F R, Müser M H. Quantum dynamics in the highly discrete, commensurate Frenkel Kontorova model: A path-integral molecular dynamics study. J Chem Phys 122(12): 124711 (2005)
[83]
Deng S J, Chenu A, Diao P P, Li F, Yu S, Coulamy I, del Campo A, Wu H B. Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci Adv 4(4): eaar5909 (2018)
[84]
Fogler M M, Butov L V, Novoselov K S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat Commun 5: 4555 (2014)
[85]
Berman O L, Kezerashvili R Y. High-temperature superfluidity of the two-component bose gas in a transition metal dichalcogenide bilayer. Phys Rev B 93(24): 245410 (2016)
[86]
Li J I A, Taniguchi T, Watanabe K, Hone J, Dean C R. Excitonic superfluid phase in double bilayer graphene. Nat Phys 13(8): 751–755 (2017)
[87]
Liu X M, Watanabe K, Taniguchi T, Halperin B I, Kim P. Quantum hall drag of exciton condensate in graphene. Nat Phys 13(8): 746–750 (2017)
[88]
Popov V L. Contact Mechanics and Friction. Springer, 2010.
[89]
Zuev L B. Autowave mechanics of plastic flow in solids. Phys Wave Phen 20(3): 166–173 (2012)
[90]
Ostermeyer G P, Popov V L, Shilko E V, Vasiljeva O S. Multiscale Biomechanics and Tribology of Inorganic and Organic Systems: In Memory of Professor Sergey Psakhie. Springer Nature, 2021.
[91]
Pustovalov V V. Serrated deformation of metals and alloys at low temperatures (Review). Low Temp Phys 34(9): 683–723 (2008)
[92]
Granot E. Shearing a Fermionic gas and quantized friction. Europhys Lett 77(3): 36002 (2007)
[93]
Jia J F, Li S C, Zhang Y F, Xue Q K. Quantum size effects induced novel properties in two-dimensional electronic systems: Pb thin films on Si(111). J Phys Soc Jpn 76(8): 082001 (2007)
[94]
Han T Z, Dong G C, Shen Q T, Zhang Y F, Jia J F, Xue Q K. Adhesion modulation by quantum size effects in Pb/Si(111) system. Appl Phys Lett 89(18): 183109 (2006)
[95]
Steverding B. Quantization of stress waves and fracture. Mater Sci Eng 9: 185–189 (1972)
[96]
Schwinger J. Brownian motion of a quantum oscillator. J Math Phys 2(3): 407–432 (1961)
[97]
Umezawa H, Matsumoto H, Tachiki M. Thermo Field Dynamics and Condensed States. Amsterdam: North-Holland, 1982.
[98]
Khanna F C. Thermal Quantum Field Theory: Algebraic Aspects and Applications. World Scientific, 2009.
[99]
Barnett S M, Pegg D T. Phase in quantum optics. J Phys A: Math Gen 19(18): 3849–3862 (1986)
[100]
Susskind L, Glogower J. Quantum mechanical phase and time operator. Physics 1(1): 49–61 (1964)
[101]
Nieto M M. Quantum phase and quantum phase operators: Some physics and some history. Phys Scr T48: 5–12 (1993)
[102]
Barnett S M, Vaccaro J A. The Quantum Phase Operator: A Review. Taylor and Francis, 2007.