Journal Home > Volume 11 , Issue 12

Friction is a fundamental force that impacts almost all interface-related applications. Over the past decade, there is a revival in our basic understanding and practical applications of the friction. In this review, we discuss the recent progress on solid–liquid interfacial friction from the perspective of interfaces. We first discuss the fundamentals and theoretical evolution of solid–liquid interfacial friction based on both bulk interactions and molecular interactions. Then, we summarize the interfacial friction regulation strategies manifested in both natural surfaces and artificial systems, focusing on how liquid, solid, gas, and hydrodynamic coupling actions mediate interfacial friction. Next, we discuss some practical applications that are inhibited or reinforced by interfacial friction. At last, we present the challenges to further understand and regulate interfacial friction.


menu
Abstract
Full text
Outline
About this article

Interfacial friction at action: Interactions, regulation, and applications

Show Author's information Zhiran YI1,2,3Xiong WANG1Wanbo LI1Xuezhi QIN1Yang LI1Kaiqiang WANG1,4Yunting GUO1,5Xing LI1Wenming ZHANG3Zuankai WANG1,2 ( )
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
Hong Kong Centre for Cerebro–caradiovasular Health Engineering (COCHE), Hong Kong 999077, China
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

Abstract

Friction is a fundamental force that impacts almost all interface-related applications. Over the past decade, there is a revival in our basic understanding and practical applications of the friction. In this review, we discuss the recent progress on solid–liquid interfacial friction from the perspective of interfaces. We first discuss the fundamentals and theoretical evolution of solid–liquid interfacial friction based on both bulk interactions and molecular interactions. Then, we summarize the interfacial friction regulation strategies manifested in both natural surfaces and artificial systems, focusing on how liquid, solid, gas, and hydrodynamic coupling actions mediate interfacial friction. Next, we discuss some practical applications that are inhibited or reinforced by interfacial friction. At last, we present the challenges to further understand and regulate interfacial friction.

Keywords: interfacial interaction, solid–liquid interface, interfacial friction, friction regulation

References(324)

[1]
He Y, She D S, Liu Z Y, Wang X, Zhong L, Wang C M, Wang G F, Mao S X. Atomistic observation on diffusion-mediated friction between single-asperity contacts. Nat Mater 21(2): 173–180 (2022)
[2]
Kessler D A. Surface physics—A new crack at friction. Nature 413(6853): 260–261 (2001)
[3]
Xu W H, Zheng H X, Liu Y, Zhou X F, Zhang C, Song Y X, Deng X, Leung M, Yang Z B, Xu R X, et al. A droplet-based electricity generator with high instantaneous power density. Nature 578(7795): 392–396 (2020)
[4]
Wu H, Mendel N, van den Ende D, Zhou G F, Mugele F. Energy harvesting from drops impacting onto charged surfaces. Phys Rev Lett 125(7): 078301 (2020)
[5]
Jiang M N, Wang Y, Liu F Y, Du H H, Li Y C, Zhang H H, To S, Wang S, Pan C, Yu J H, et al. Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling. Nature 601(7894): 568–572 (2022)
[6]
Dudukovic N A, Fong E J, Gemeda H B, DeOtte J R, Cerón M R, Moran B D, Davis J T, Baker S E, Duoss E B. Cellular fluidics. Nature 595(7865): 58–65 (2021)
[7]
Zhang Z, Wen L P, Jiang L. Nanofluidics for osmotic energy conversion. Nat Rev Mater 6(7): 622–639 (2021)
[8]
Joly L, Biben T. Wetting and friction on superoleophobic surfaces. Soft Matter 5(13): 2549–2557 (2009)
[9]
Quéré D. Wetting and roughness. Annu Rev Mater Res 38: 71–99 (2008)
[10]
Wang X K, Zeng J, Li J, Yu X Q, Wang Z K, Zhang Y F. Beetle and cactus-inspired surface endows continuous and directional droplet jumping for efficient water harvesting. J Mater Chem A 9(3): 1507–1516 (2021)
[11]
Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature 463(7281): 640–643 (2010)
[12]
Singh A, Corvelli M, Unterman S A, Wepasnick K A, McDonnell P, Elisseeff J H. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mater 13(10): 988–995 (2014)
[13]
Bodega F, Sironi C, Porta C, Zocchi L, Agostoni E. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation. Resp Physiol Neurobi 206: 1–3 (2015)
[14]
Chen S F, Jiang S Y. A new avenue to nonfouling materials. Adv Mater 20(2): 335–338 (2008)
[15]
Yang J T, Chen H, Xiao S W, Shen M X, Chen F, Fan P, Zhong M Q, Zheng J. Salt-responsive zwitterionic polymer brushes with tunable friction and antifouling properties. Langmuir 31(33): 9125–9133 (2015)
[16]
Driels M R, Ayyash S. Drag reduction in laminar flow. Nature 259(5542): 389–390 (1976)
[17]
Radin I, Zakin J L, Patterson G K. Drag reduction in solid-fluid systems. AIChE J 21(2): 358–371 (1975)
[18]
Bechert D W, Hoppe G, Reif W E. On the drag reduction of the shark skin. In: Proceedings of the 23rd Aerospace Sciences Meeting, Reno, NV, USA, 1985: 546.
[19]
Lv P, Zhang Y L, Han D D, Sun H B. Directional droplet transport on functional surfaces with superwettabilities. Adv Mater Interfaces 8(12): 2100043 (2021)
[20]
Li J Q, Zhou X F, Tao R, Zheng H X, Wang Z K. Directional liquid transport from the cold region to the hot region on a topological surface. Langmuir 37(16): 5059–5065 (2021)
[21]
Joly L, Tocci G, Merabia S, Michaelides A. Strong coupling between nanofluidic transport and interfacial chemistry: How defect reactivity controls liquid–solid friction through hydrogen bonding. J Phys Chem Lett 7(7): 1381–1386 (2016)
[22]
Zhao L, Sun J J, Wang X, Zeng L, Wang C L, Tu Y S. System-size effect on the friction at liquid–solid interfaces. Appl Math Mech-Engl 41(3): 471–478 (2020)
[23]
Mo Y F, Turner K T, Szlufarska I. Friction laws at the nanoscale. Nature 457(7233): 1116–1119 (2009)
[24]
Dowson D. History of Tribology. Reading (USA): Addison–Wesley Longman Ltd, 1979.
[25]
Hutchings I M. Leonardo da Vinci’s studies of friction. Wear 360–361: 51–66 (2016)
[26]
Dowson D. Men of tribology: Guillaume Amontons (1663–1705) and John Theophilus Desaguliers (1683–1744). J Lubr Technol 100(1): 2–5 (1978)
[27]
Amontons G. De la resistance cause’e dans les machines (about resistance and force in machines). Mem l’Acedemie R A: 257–282 (1699)
[28]
Popova E, Popov V L. The research works of Coulomb and Amontons and generalized laws of friction. Friction 3(2): 183–190 (2015)
[29]
Heyman J. Coulomb’s Memoir on Statics: An Essay in the History of Civil Engineering. Cambridge (UK): Cambridge University Press, 1972.
[30]
Coulomb C A. Essai sur une application des regles de maximis et minimis quelques problemes de statique, relatits a l’architecture. Memoires de Mathematique de l’Academie Royale de Science 7: 343–382 (1773) (in French)
[31]
Kavokine N, Bocquet M L, Bocquet L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602(7895): 84–90 (2022)
[32]
Mouterde T, Raux P S, Clanet C, Quéré D. Superhydrophobic frictions. PNAS 116(17): 8220–8223 (2019)
[33]
Feng S L, Zhu P G, Zheng H X, Zhan H Y, Chen C, Li J Q, Wang L Q, Yao X, Liu Y H, Wang Z K. Three-dimensional capillary ratchet-induced liquid directional steering. Science 373(6561): 1344–1348 (2021)
[34]
Zhang Newby B M, Chaudhury M K. Friction in adhesion. Langmuir 14(17): 4865–4872 (1998)
[35]
McFarlane J S, Tabor D. Relation between friction and adhesion. P Roy Soc A-Math Phy 202(1069): 244–253 (1950)
[36]
Xiao F, Chen Z, Wei Z X, Tian L L. Hydrophobic interaction: A promising driving force for the biomedical applications of nucleic acids. Adv Sci 7(16): 2001048 (2020)
[37]
Ballauff M. More friction for polyelectrolyte brushes— Trivalent yttrium cations increase friction greatly compared with monovalent cations. Science 360(6396): 1399–1400 (2018)
[38]
Cottin-Bizonne C, Cross B, Steinberger A, Charlaix E. Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts. Phys Rev Lett 94(5): 056102 (2005)
[39]
Ma M D, Shen L M, Sheridan J, Liu J Z, Chen C, Zheng Q S. Friction of water slipping in carbon nanotubes. Phys Rev E 83(3): 036316 (2011)
[40]
Brigo L, Natali M, Pierno M, Mammano F, Sada C, Fois G, Pozzato A, dal Zilio S, Tormen M, Mistura G. Water slip and friction at a solid surface. J Phys Condens Matter 20(35): 354016 (2008)
[41]
Aranson I S, Tsimring L S, Vinokur V M. Stick–slip friction and nucleation dynamics of ultrathin liquid films. Phys Rev B 65(12): 125402 (2002)
[42]
Lei Y J, Leng Y S. Stick–slip friction and energy dissipation in boundary lubrication. Phys Rev Lett 107(14): 147801 (2011)
[43]
Balzer B N, Gallei M, Hauf M V, Stallhofer M, Wiegleb L, Holleitner A, Rehahn M, Hugel T. Nanoscale friction mechanisms at solid–liquid interfaces. Angew Chem Int Ed 52(25): 6541–6544 (2013)
[44]
Bowden F P, Gregory J N, Tabor D. Lubrication of metal surfaces by fatty acids. Nature 156(3952): 97–101 (1945)
[45]
Bowden F P, Moore A J W. Adhesion of lubricated metals. Nature 155(3937): 451–452 (1945)
[46]
Bowden F P, Tabor D. Friction, lubrication and wear: A survey of work during the last decade. Brit J Appl Phys 17(12): 1521–1544 (1966)
[47]
Kalin M, Polajnar M. The effect of wetting and surface energy on the friction and slip in oil-lubricated contacts. Tribol Lett 52(2): 185–194 (2013)
[48]
Tang, J Z, Ding, Q, Hu, L T, Qin, B F. Effects of viscosity, polarity and friction pairs on the friction behavior of lubricated DLC film. Tribology 34(2): 180–186 (2014) (in Chinese)
[49]
Cafolla C, Foster W, Voïtchovsky K. Lubricated friction around nanodefects. Sci Adv 6(14): eaaz3673 (2020)
[50]
Cheikh C, Koper G. Friction in surfactant layers at solid–liquid interfaces. Colloid Surface A 270–271: 252–256 (2005)
[51]
Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 5(3): 263–284 (2017)
[52]
Ma L R, Gaisinskaya-Kipnis A, Kampf N, Klein J. Origins of hydration lubrication. Nat Commun 6: 6060 (2015)
[53]
Dhopatkar N, Defante A P, Dhinojwala A. Ice-like water supports hydration forces and eases sliding friction. Sci Adv 2(8): e1600763 (2016)
[54]
Veltkamp B, Velikov K P, Venner C H, Bonn D. Lubricated friction and the Hersey number. Phys Rev Lett 126(4): 044301 (2021)
[55]
Briggs G A D, Briscoe B J. Effect of surface roughness on rolling friction and adhesion between elastic solids. Nature 260(5549): 313–315 (1976)
[56]
Lee W G, Cho K H, Jang H. Molecular dynamics simulation of rolling friction using nanosize spheres. Tribol Lett 33(1): 37–43 (2009)
[57]
Blais B, Bertrand F. CFD-DEM investigation of viscous solid–liquid mixing: Impact of particle properties and mixer characteristics. Chem Eng Res Des 118: 270–285 (2017)
[58]
Perrin H, Clavaud C, Wyart M, Metzger B, Forterre Y. Interparticle friction leads to nonmonotonic flow curves and hysteresis in viscous suspensions. Phys Rev X 9(3): 031027 (2019)
[59]
Roy P, Liu S H, Dutcher C S. Droplet interfacial tensions and phase transitions measured in microfluidic channels. Annu Rev Phys Chem 72(1): 73–97 (2021)
[60]
Zarzar L D, Sresht V, Sletten E M, Kalow J A, Blankschtein D, Swager T M. Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518(7540): 520–524 (2015)
[61]
Sugiura S, Nakajima M, Iwamoto S, Seki M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18): 5562–5566 (2001)
[62]
Sullivan D E. Surface tension and contact angle of a liquid–solid interface. J Chem Phys 74(4): 2604–2615 (1981)
[63]
Young T III. An essay on the cohesion of fluids. Philos T R Soc 95: 65–87 (1805)
[64]
Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8): 988–994 (1936)
[65]
Cassie A B D. Contact angles. Discuss Faraday Soc 3: 11–16 (1948)
[66]
Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc 40: 546–551 (1944)
[67]
Grzybowski B A, Fialkowski M, Wiles J A. Kinetics of contact electrification between metals and polymers. J Phys Chem B 109(43): 20511–20515 (2005)
[68]
Diaz A F, Wollmann D, Dreblow D. Contact electrification: Ion transfer to metals and polymers. Chem Mater 3(6): 997–999 (1991)
[69]
Baytekin H T, Patashinski A Z, Branicki M, Baytekin B, Soh S, Grzybowski B A. The mosaic of surface charge in contact electrification. Science 333(6040): 308–312 (2011)
[70]
Li X M, Bista P, Stetten A Z, Bonart H, Schür M T, Hardt S, Bodziony F, Marschall H, Saal A, Deng X, et al. Spontaneous charging affects the motion of sliding drops. Nat Phys 18(6): 713–719 (2022)
[71]
Joly L, Ybert C, Trizac E, Bocquet L. Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. J Chem Phys 125(20): 204716 (2006)
[72]
Lowell J, Rose-Innes A C. Contact electrification. Adv Phys 29(6): 947–1023 (1980)
[73]
Xu W H, Song Y X, Xu R X, Wang Z K. Electrohydrodynamic and hydroelectric effects at the water–solid interface: From fundamentals to applications. Adv Mater Interfaces 8(2): 2000670 (2021)
[74]
Budakian R, Weninger K, Hiller R A, Putterman S J. Picosecond discharges and stick–slip friction at a moving meniscus of mercury on glass. Nature 391(6664): 266–268 (1998)
[75]
Nauruzbayeva J, Sun Z H, Gallo A Jr, Ibrahim M, Santamarina J C, Mishra H. Electrification at water–hydrophobe interfaces. Nat Commun 11(1): 5285 (2020)
[76]
Israelachvili J N. Intermolecular and Surface Forces, 3rd edn. New York (USA): Academic Press, 2011.
DOI
[77]
Ise N, Yoshida H. Paradoxes of the repulsion-only assumption. Acc Chem Res 29(1): 3–5 (1996)
[78]
Dussan V E B. On the spreading of liquids on solid surfaces: Static and dynamic contact lines. Annu Rev Fluid Mech 11: 371–400 (1979)
[79]
Barrio-Zhang H, Ruiz-Gutiérrez É, Armstrong S, McHale G, Wells G G, Ledesma-Aguilar R. Contact-angle hysteresis and contact-line friction on slippery liquid-like surfaces. Langmuir 36(49): 15094–15101 (2020)
[80]
Wang F C, Wu H A. Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter 9(24): 5703 (2013)
[81]
Chen Z, Khajeh A, Martini A, Kim S H. Chemical and physical origins of friction on surfaces with atomic steps. Sci Adv 5(8): eaaw0513 (2019)
[82]
Raviv U, Klein J. Fluidity of bound hydration layers. Science 297(5586): 1540–1543 (2002)
[83]
Choi K S, Yang X, Clayton B R, Glover E J, Atlar M, Semenov B N, Kulik V M. Turbulent drag reduction using compliant surfaces. P Roy Soc A-Math Phy 453(1965): 2229–2240 (1997)
[84]
Tcholakova S, Denkov N D, Golemanov K, Ananthapadmanabhan K P, Lips A. Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions. Phys Rev E 78(1): 011405 (2008)
[85]
Erbaş A, Horinek D, Netz R R. Viscous friction of hydrogen-bonded matter. J Am Chem Soc 134(1): 623–630 (2012)
[86]
Bosanquet C H. LV. On the flow of liquids into capillary tubes. Lond Edinb Dublin Philos Mag J Sci 45(267): 525–531 (1923)
[87]
Radin I, Zakin J L, Patterson G K. Drag reduction of solid–liquid suspensions in pipe flow. Nat Phys Sci 246(149): 11–13 (1973)
[88]
Liu M, Ma L R. Drag reduction methods at solid–liquid interfaces. Friction 10(4): 491–515 (2022)
[89]
Wenzel R N. Surface roughness and contact angle. J Phys Chem 53(9): 1466–1467 (1949)
[90]
Extrand C W. Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir 19(9): 3793–3796 (2003)
[91]
Gao L C, McCarthy T J. How Wenzel and Cassie were wrong. Langmuir 23(7): 3762–3765 (2007)
[92]
Snoeijer J H, Andreotti B. Moving contact lines: Scales, regimes, and dynamical transitions. Annu Rev Fluid Mech 45: 269–292 (2013)
[93]
Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. Wetting and spreading. Rev Mod Phys 81(2): 739–805 (2009)
[94]
Ramiasa M, Ralston J, Fetzer R, Sedev R. Contact line friction in liquid–liquid displacement on hydrophobic surfaces. J Phys Chem C 115(50): 24975–24986 (2011)
[95]
Wong T S, Kang S H, Tang S K, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477(7365): 443–447 (2011)
[96]
Rong W T, Zhang H F, Zhang T J, Mao Z G, Liu X W, Song K G. Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro-/nanostructured arrays. Adv Eng Mater 23(1): 2000821 (2021)
[97]
Wang L M, McCarthy T J. Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency. Angew Chem Int Ed 55(1): 244–248 (2016)
[98]
Armstrong S, McHale G, Ledesma-Aguilar R, Wells G G. Pinning-free evaporation of sessile droplets of water from solid surfaces. Langmuir 35(8): 2989–2996 (2019)
[99]
Johansson P, Hess B. Molecular origin of contact line friction in dynamic wetting. Phys Rev Fluids 3(7): 074201 (2018)
[100]
Pendry J B. Quantum friction—Fact or fiction? New J Phys 12(3): 033028 (2010)
[101]
Marino J, Recati A, Carusotto I. Casimir forces and quantum friction from Ginzburg radiation in atomic Bose-Einstein condensates. Phys Rev Lett 118(4): 045301 (2017)
[102]
Volokitin A I, Persson B N J. Quantum friction. Phys Rev Lett 106(9): 094502 (2011)
[103]
Zhang X, Huang Y L, Ma Z S, Niu L Y, Sun C Q. From ice superlubricity to quantum friction: Electronic repulsivity and phononic elasticity. Friction 3(4): 294–319 (2015)
[104]
De Bièvre S, Faupin J, Schubnel B. Spectral analysis of a model for quantum friction. Rev Math Phys 29(6): 1750019 (2017)
[105]
Deng S J, Chenu A, Diao P P, Li F, Yu S, Coulamy I, del Campo A, Wu H B. Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci Adv 4(4): eaar5909 (2018)
[106]
Howell H G. The laws of friction. Nature 171(4344): 220 (1953)
[107]
Stipe B C, Mamin H J, Stowe T D, Kenny T W, Rugar D. Noncontact friction and force fluctuations between closely spaced bodies. Phys Rev Lett 87(9): 096801 (2001)
[108]
Kuehn S, Loring R F, Marohn J A. Dielectric fluctuations and the origins of noncontact friction. Phys Rev Lett 96(15): 156103 (2006)
[109]
Volokitin A I, Persson B N J. Near-field radiative heat transfer and noncontact friction. Rev Mod Phys 79(4): 1291–1329 (2007)
[110]
She J H, Balatsky A V. Noncontact friction and relaxational dynamics of surface defects. Phys Rev Lett 108(13): 136101 (2012)
[111]
Lee M, Kim B, Kim J, Jhe W. Noncontact friction via capillary shear interaction at nanoscale. Nat Commun 6: 7359 (2015)
[112]
Lee M R, Vink R L C, Volkert C A, Krüger M. Noncontact friction: Role of phonon damping and its nonuniversality. Phys Rev B 104(17): 174309 (2021)
[113]
Navier C L. Sur les lois de l’équilibre et du mouvement des corps élastiques. Mem Acad R Sci Inst France 6: 369 (1827) (in French)
[114]
Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums. Proc Cambridge Philos Soc 9: 8 (1850)
[115]
Phan, D T T, Wang X L, Craver B M, Sobrino, A, Zhao D, Chen C J, Lee L Y N, Gorge, S C, Lee A P, Hughes, C C W. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17(3): 511–520 (2017)
[116]
Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev 39(3): 1073–1095 (2010)
[117]
Neto C, Evans D R, Bonaccurso E, Butt H J, Craig V S J. Boundary slip in Newtonian liquids: A review of experimental studies. Rep Prog Phys 68(12): 2859–2897 (2005)
[118]
Bocquet L, Barrat J L. Flow boundary conditions from nano- to micro-scales. Soft Matter 3(6): 685–693 (2007)
[119]
Chen S Y, Doolen G D. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30: 329–364 (1998)
[120]
McNamara G R, Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata. Phys Rev Lett 61(20): 2332–2335 (1988)
[121]
Taher M A, Kim H D, Lee Y W. LBM simulation on friction and mass flow analysis in a rough microchannel. J Korean Soc Mar Eng 38(10): 1237–1243 (2014)
[122]
Huang J J, Shu C, Chew Y T. Lattice Boltzmann study of droplet motion inside a grooved channel. Phys Fluids 21(2): 022103 (2009)
[123]
Dubov A L, Schmieschek S, Asmolov E S, Harting J, Vinogradova O I. Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane. J Chem Phys 140(3): 034707 (2014)
[124]
Tomlinson G A. CVI. A molecular theory of friction. Lond Edinb Dublin Philos Mag J Sci 7(46): 905–939 (1929)
[125]
Bowden, F P, Tabor, D. The area of contact between stationary and moving surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 169(938): 391–413 (1938).
[126]
Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. Equation of state calculations by fast computing machines. J Chem Phys 21(6): 1087–1092 (1953)
[127]
Balasubramanian S, Mundy C J. Calculation of friction coefficient of a solid–liquid interface via a non-equilibrium molecular dynamics simulation. B Mater Sci 22(5): 873–876 (1999)
[128]
Petravic J, Harrowell P. On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J Chem Phys 127(17): 174706 (2007)
[129]
Tocci G, Joly L, Michaelides A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures. Nano Lett 14(12): 6872–6877 (2014)
[130]
Falk K, Sedlmeier F, Joly L, Netz R R, Bocquet L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett 10(10): 4067–4073 (2010)
[131]
Thomas J A, McGaughey A J H. Reassessing fast water transport through carbon nanotubes. Nano Lett 8(9): 2788–2793 (2008)
[132]
Bocquet L, Barrat J L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys Rev E 49(4): 3079–3092 (1994)
[133]
Bocquet L, Barrat J. Hydrodynamic boundary conditions and correlation functions of confined fluids. Phys Rev Lett 70(18): 2726–2729 (1993)
[134]
Huang K, Szlufarska I. Green–Kubo relation for friction at liquid–solid interfaces. Phys Rev E 89(3): 032119 (2014)
[135]
Bocquet L, Barrat J L. On the Green–Kubo relationship for the liquid–solid friction coefficient. J Chem Phys 139(4): 044704 (2013)
[136]
Oga H, Yamaguchi Y, Omori T, Merabia S, Joly L. Green–Kubo measurement of liquid–solid friction in finite-size systems. J Chem Phys 151(5): 054502 (2019)
[137]
Wu Y, Wei Q B, Cai M R, Zhou F. Interfacial friction control. Adv Mater Interfaces 2(2): 1400392 (2015)
[138]
Wang Z B, Xu Q, Wang L L, Heng L P, Jiang L. Temperature-induced switchable interfacial interactions on slippery surfaces for controllable liquid manipulation. J Mater Chem A 7(31): 18510–18518 (2019)
[139]
Zheng F, Lv M, Wang Q H, Wang T M. Effect of temperature on friction and wear behaviors of polyimide (PI)-based solid–liquid lubricating materials. Polym Advan Technol 26(8): 988–993 (2015)
[140]
McGhee E O, Urueña J M, Pitenis A A, Sawyer W G. Temperature-dependent friction of gemini hydrogels. Tribol Lett 67(4): 117 (2019)
[141]
Hu N N, Wu N, Wang S Q, Jiang H B, Li Z P. Tribological properties of friction pairs in lubricant contaminated with particles under high temperature. Tribol Trans 60(4): 663–669 (2017)
[142]
Persson B N J. Ice friction: Glacier sliding on hard randomly rough bed surface. J Chem Phys 149(23): 234701 (2018)
[143]
Ewen J P, Gao H Y, Müser M H, Dini D. Shear heating, flow, and friction of confined molecular fluids at high pressure. Phys Chem Chem Phys 21(10): 5813–5823 (2019)
[144]
Wang Y N, Zhang Y F, Tang C, Yu J X, He H T, Qi H M. Solid/liquid interfacial friction and slip behaviors on roughness surface under applied voltage. Tribol Int 144: 106128 (2020)
[145]
Zhang Y F, Wang Y N, Wu X L, Tang C, Liu Z H, Zhou G Y, Yu J X. Combined effects of pinning and adhesion force on solid/liquid interfacial friction behaviors under applied voltage. Tribol Int 134: 102–108 (2019)
[146]
Morooka T, Sagara T. Electrowetting of hydrofluoroether liquid droplet at a gold electrode/water interface: Significance of lower adhesion energy and static friction energy. Langmuir 36(33): 9685–9692 (2020)
[147]
Acharya B, Seed C M, Brenner D W, Smirnov A I, Krim J. Tuning friction and slip at solid-nanoparticle suspension interfaces by electric fields. Sci Rep 9: 18584 (2019)
[148]
Jin Y K, Xu W H, Zhang H H, Li R R, Sun J, Yang S Y, Liu M J, Mao H Y, Wang Z K. Electrostatic tweezer for droplet manipulation. PNAS 119(2): e2105459119 (2022)
[149]
Wu Y, Liu Z L, Liang Y M, Pei X W, Zhou F, Xue Q J. Photoresponsive superhydrophobic coating for regulating boundary slippage. Soft Matter 10(29): 5318–5324 (2014)
[150]
Lai Y K, Huang J Y, Cui Z Q, Ge M Z, Zhang K Q, Chen Z, Chi L F. Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 12(16): 2203–2224 (2016)
[151]
Ben S, Zhou T T, Ma H, Yao J J, Ning Y Z, Tian D L, Liu K S, Jiang L. Multifunctional magnetocontrollable superwettable-microcilia surface for directional droplet manipulation. Adv Sci 6(17): 1900834 (2019)
[152]
Huang K, Szlufarska I. Friction and slip at the solid/liquid interface in vibrational systems. Langmuir 28(50): 17302–17312 (2012)
[153]
Genzer J, Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 290(5499): 2130–2133 (2000)
[154]
Hao C L, Li J, Liu Y, Zhou X F, Liu Y H, Liu R, Che L F, Zhou W Z, Sun D, Li L, et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nat Commun 6: 7986 (2015)
[155]
Bohn H F, Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. PNAS 101(39): 14138–14143 (2004)
[156]
Jin Z M, Dowson D. Bio-friction. Friction 1(2): 100–113 (2013)
[157]
Greene G W, Banquy X, Lee D W, Lowrey D D, Yu J, Israelachvili J N. Adaptive mechanically controlled lubrication mechanism found in articular joints. PNAS 108(13): 5255–5259 (2011)
[158]
Neville A, Morina A, Liskiewicz T, Yan Y. Synovial joint lubrication—Does nature teach more effective engineering lubrication strategies? P I Mech Eng C-J Mech Eng Sci 221(10): 1223–1230 (2007)
[159]
Dintenfass L. Lubrication in synovial joints. Nature 197(4866): 496–497 (1963)
[160]
Mouza A, Skordia O, Tzouganatos I, Paras S. A simplified model for predicting friction factors of laminar blood flow in small-caliber vessels. Fluids 3(4): 75 (2018)
[161]
Huang X Z, Wu J, Zhu Y D, Zhang Y M, Feng X, Lu X H. Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication: A review. Chin J Chem Eng 25(11): 1552–1562 (2017)
[162]
Sweeney J, Hausen F, Hayes R, Webber G B, Endres F, Rutland M W, Bennewitz R, Atkin R. Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys Rev Lett 109(15): 155502 (2012)
[163]
Capozza R, Benassi A, Vanossi A, Tosatti E. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid. J Chem Phys 143(14): 144703 (2015)
[164]
Sweeney J, Webber G B, Atkin R. Poly(ethylene oxide) mushrooms adsorbed at silica-ionic liquid interfaces reduce friction. Langmuir 32(8): 1947–1954 (2016)
[165]
Radiom M. Ionic liquid–solid interface and applications in lubrication and energy storage. Curr Opin Colloid In 39: 148–161 (2019)
[166]
Fajardo O Y, Bresme F, Kornyshev A A, Urbakh M. Electrotunable friction with ionic liquid lubricants: How important is the molecular structure of the ions? J Phys Chem Lett 6(20): 3998–4004 (2015)
[167]
Liefferink R W, Hsia F C, Weber B, Bonn D. Friction on ice: How temperature, pressure, and speed control the slipperiness of ice. Phys Rev X 11(1): 011025 (2021)
[168]
Kietzig A M, Hatzikiriakos S G, Englezos P. Physics of ice friction. J Appl Phys 107(8): 081101 (2010)
[169]
Louden P B, Gezelter J D. Friction at ice-Ih/water interfaces is governed by solid/liquid hydrogen-bonding. J Phys Chem C 121(48): 26764–26776 (2017)
[170]
Persson B N J. Ice friction: Role of non-uniform frictional heating and ice premelting. J Chem Phys 143(22): 224701 (2015)
[171]
Kietzig A M, Hatzikiriakos S G, Englezos P. Ice friction: The effects of surface roughness, structure, and hydrophobicity. J Appl Phys 106(2): 024303 (2009)
[172]
Verberck B. Slippy nitty-gritty. Nat Phys 17(3): 302 (2021)
[173]
Louden P B, Gezelter J D. Simulations of solid–liquid friction at ice-Ih/water interfaces. J Chem Phys 139(19): 194710 (2013)
[174]
Dash J G. Surface melting. Contemp Phys 30(2): 89–100 (1989)
[175]
Macconaill M A. Lubrication of mammalian joints. Nature 185(4717): 920 (1960)
[176]
Ruggiero A. Milestones in natural lubrication of synovial joints. Front Mech Eng 6: 52 (2020)
[177]
Suhardi V J, Bichara D A, Kwok S, Freiberg A A, Rubash H, Malchau H, Yun S H, Muratoglu O K, Oral E. A fully functional drug-eluting joint implant. Nat Biomed Eng 1: 0080 (2017)
[178]
Zhang Y L, Zhao W Y, Ma S H, Liu H, Wang X W, Zhao X D, Yu B, Cai M R, Zhou F. Modulus adaptive lubricating prototype inspired by instant muscle hardening mechanism of catfish skin. Nat Commun 13(1): 377 (2022)
[179]
Chester F M, Rowe C, Ujiie K, Kirkpatrick J, Regalla C, Remitti F, Moore J C, Toy V, Wolfson-Schwehr M, Bose S, et al. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake. Science 342(6163): 1208–1211 (2013)
[180]
Sutherland R, Townend J, Toy V, Upton P, Coussens J, Allen M, Baratin L M, Barth N, Becroft L, Boese C, et al. Extreme hydrothermal conditions at an active plate-bounding fault. Nature 546(7656): 137–140 (2017)
[181]
Li J Q, Zheng H X, Yang Z B, Wang Z K. Breakdown in the directional transport of droplets on the peristome of pitcher plants. Commun Phys 1: 35 (2018)
[182]
Chen H W, Zhang P F, Zhang L W, Liu H L, Jiang Y, Zhang D Y, Han Z W, Jiang L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532(7597): 85–89 (2016)
[183]
Li J Q, Song Y X, Zheng H X, Feng S L, Xu W H, Wang Z K. Designing biomimetic liquid diodes. Soft Matter 15(9): 1902–1915 (2019)
[184]
Li J, Li J Q, Sun J, Feng S L, Wang Z K. Biological and engineered topological droplet rectifiers. Adv Mater 31(14): 1806501 (2019)
[185]
Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wan R Z, Hu J, Fang H P. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys Rev Lett 103(13): 137801 (2009)
[186]
Lee K, Kim Q, An S, An J, Kim J, Kim B, Jhe W. Superwetting of TiO2 by light-induced water-layer growth via delocalized surface electrons. PNAS 111(16): 5784–5789 (2014)
[187]
Wang C L, Wen B H, Tu Y S, Wan R Z, Fang H P. Friction reduction at a superhydrophilic surface: Role of ordered water. J Phys Chem C 119(21): 11679–11684 (2015)
[188]
Zhong X W, Xia Y Q, Feng X. Tribological application and mechanism of epicuticular wax. Friction 7(1): 44–58 (2019)
[189]
Xia Y Q, Xu X C, Feng X, Chen G X. Leaf-surface wax of desert plants as a potential lubricant additive. Friction 3(3): 208–213 (2015)
[190]
Ren Y L, Zhang L, Xie G X, Li Z B, Chen H, Gong H J, Xu W H, Guo D, Luo J B. A review on tribology of polymer composite coatings. Friction 9(3): 429–470 (2021)
[191]
Liu J J, Qu S X, Suo Z G, Yang W. Functional hydrogel coatings. Natl Sci Rev 8(2): nwaa254 (2021)
[192]
McHale G, Newton M I. Liquid marbles: Principles and applications. Soft Matter 7(12): 5473–5481 (2011)
[193]
Kasahara M, Akimoto S I, Hariyama T, Takaku Y, Yusa S I, Okada S, Nakajima K, Hirai T, Mayama H, Okada S, et al. Liquid marbles in nature: Craft of aphids for survival. Langmuir 35(18): 6169–6178 (2019)
[194]
Aussillous P, Quéré D. Liquid marbles. Nature 411(6840): 924–927 (2001)
[195]
Aussillous P, Quéré D. Properties of liquid marbles. P Roy Soc A-Math Phy 462(2067): 973–999 (2006)
[196]
Sarvi F, Jain K, Arbatan T, Verma P J, Hourigan K, Thompson M C, Shen W, Chan P P. Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4(1): 77–86 (2015)
[197]
Ooi C H, van Nguyen A, Evans G M, Dao D V, Nguyen N T. Measuring the coefficient of friction of a small floating liquid marble. Sci Rep 6: 38346 (2016)
[198]
Leidenfrost J G. De Aquae Communis Nonnullis Qualitatibus Tractatus. City (Country): Ovenius, 1756. (in language)
[199]
Li J, Hou Y M, Liu Y H, Hao C L, Li M F, Chaudhury M K, Yao S H, Wang Z K. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat Phys 12(6): 606–612 (2016)
[200]
Zhang P P, Peng B X, Wang J M, Jiang L. Bioinspired self-propulsion of water droplets at the convergence of Janus-textured heated substrates. Adv Funct Mater 29(39): 1904535 (2019)
[201]
Dodd L E, Wood D, Geraldi N R, Wells G G, McHale G, Xu B B, Stuart-Cole S, Martin J, Newton M I. Low friction droplet transportation on a substrate with a selective Leidenfrost effect. ACS Appl Mater Inter 8(34): 22658–22663 (2016)
[202]
Dodd L E, Agrawal P, Parnell M T, Geraldi N R, Xu B B, Wells G G, Stuart-Cole S, Newton M I, McHale G, Wood D. Low-friction self-centering droplet propulsion and transport using a Leidenfrost herringbone–ratchet structure. Phys Rev Appl 11(3): 034063 (2019)
[203]
Lagubeau G, Le Merrer M, Clanet C, Quéré D. Leidenfrost on a ratchet. Nat Phys 7(5): 395–398 (2011)
[204]
Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker C J. Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97(4): 044504 (2006)
[205]
Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L. Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys Fluids 19(12): 123601 (2007)
[206]
Zhao L, Cheng J T. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces. Nanoscale 10(14): 6426–6436 (2018)
[207]
Wu Y, Cai M R, Li Z Q, Song X W, Wang H Y, Pei X W, Zhou F. Slip flow of diverse liquids on robust superomniphobic surfaces. J Colloid Interf Sci 414: 9–13 (2014)
[208]
Rothstein J P. Slip on superhydrophobic surfaces. Annu Rev Fluid Mech 42: 89–109 (2010)
[209]
Ceccio S L. Friction drag reduction of external flows with bubble and gas injection. Annu Rev Fluid Mech 42: 183–203 (2010)
[210]
Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E. High friction on a bubble mattress. Nat Mater 6(9): 665–668 (2007)
[211]
Lu J C, Fernández A, Tryggvason G. The effect of bubbles on the wall drag in a turbulent channel flow. Phys Fluids 17(9): 095102 (2005)
[212]
Hyväluoma J, Harting J. Slip flow over structured surfaces with entrapped microbubbles. Phys Rev Lett 100(24): 246001 (2008)
[213]
Finger A, Johannsmann D. Hemispherical nanobubbles reduce interfacial slippage in simple liquids. Phys Chem Chem Phys 13(40): 18015–18022 (2011)
[214]
Park H, Choi C H, Kim C J. Superhydrophobic drag reduction in turbulent flows: A critical review. Exp Fluids 62(11): 229 (2021)
[215]
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1): 1–8 (1997)
[216]
Barthlott W. Die Selbstreinigungsfähigkeit pflanzlicher Oberflächen durch Epicuticularwachse. In: Verantwortung für Die Zukunft. Klima-und Umweltforschung an der Universität Bonn, 1992: 117–120. (in Germany)
[217]
Mertaniemi H, Jokinen V, Sainiemi L, Franssila S, Marmur A, Ikkala O, Ras R H. Superhydrophobic tracks for low-friction, guided transport of water droplets. Adv Mater 23(26): 2911–2914 (2011)
[218]
Liu Y H, Wang Z K. Superhydrophobic porous networks for enhanced droplet shedding. Sci Rep 6: 33817 (2016)
[219]
Hao C L, Zhou Y, Zhou X F, Che L F, Chu B J, Wang Z K. Dynamic control of droplet jumping by tailoring nanoparticle concentrations. Appl Phys Lett 109(2): 021601 (2016)
[220]
Choi C H, Kim C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96(6): 066001 (2006)
[221]
Li F D, Hou H H, Yin J, Jiang X S. Near-infrared light-responsive dynamic wrinkle patterns. Sci Adv 4(4): eaar5762 (2018)
[222]
Erbil H Y, Demirel A L, Avcı Y, Mert O. Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611): 1377–1380 (2003)
[223]
Li X M, Yang J L, Lv K X, Papadopoulos P, Sun J, Wang D H, Zhao Y H, Chen L Q, Wang D P, Wang Z K, et al. Salvinia-like slippery surface with stable and mobile water/air contact line. Natl Sci Rev 8(5): nwaa153 (2021)
[224]
Yun G T, Jung W B, Oh M S, Jang G M, Baek J, Kim N I, Im S G, Jung H T. Springtail-inspired superomniphobic surface with extreme pressure resistance. Sci Adv 4(8): eaat4978 (2018)
[225]
Sun J, Zhu P G, Yan X T, Zhang C, Jin Y K, Chen X, Wang Z K. Robust liquid repellency by stepwise wetting resistance. Appl Phys Rev 8(3): 031403 (2021)
[226]
Savchenko Y N. Supercavitation—Problems and perspectives. In: Proceedings of the CAV 2001: Fourth International Symposium on Cavitation, Pasadena, USA, 2001: CAV2001:lecture.003.
[227]
Serebryakov V V. Supercavitation for high speed motion in water: Prediction and drag reduction problems. In: Proceedings of the ASME 2002 Joint U.S.–European Fluids Engineering Division Conference, Montreal, Canada, 2002: 411–417.
[228]
Patek S N, Caldwell R L. Extreme impact and cavitation forces of a biological hammer: Strike forces of the peacock mantis shrimp Odontodactylus scyllarus. J Exp Biol 208(19): 3655–3664 (2005)
[229]
Zia H, Lecampion B. Propagation of a height contained hydraulic fracture in turbulent flow regimes. Int J Solids Struct 110–111: 265–278 (2017)
[230]
Nikuradse J. Laws of Flow in Rough Pipes. Washington (USA): NACA, 1950.
[231]
Yang S Q, Dou G. Turbulent drag reduction with polymer additive in rough pipes. J Fluid Mech 642: 279–294 (2010)
[232]
Virk P S. Drag reduction in rough pipes. J Fluid Mech 45(2): 225–246 (1971)
[233]
Xu B, Ooti K T, Wong N T, Choi W K. Experimental investigation of flow friction for liquid flow in microchannels. Int Commun Heat Mass 27(8): 1165–1176 (2000)
[234]
Lv M, Yang L J, Wang Q H, Wang T M, Liang Y M. Tribological performance and lubrication mechanism of solid–liquid lubricating materials in high-vacuum and irradiation environments. Tribol Lett 59(1): 20 (2015)
[235]
Quere D. Leidenfrost dynamics. Annu Rev Fluid Mech 45: 197–215
[236]
Berim G O, Ruckenstein E. Dependence of the macroscopic contact angle on the liquid–solid interaction parameters and temperature. J Chem Phys 130(18): 184712 (2009)
[237]
Berim G O, Ruckenstein E. Simple expression for the dependence of the nanodrop contact angle on liquid–solid interactions and temperature. J Chem Phys 130(4): 044709 (2009)
[238]
Wu Y, Xue Y H, Pei X W, Cai M R, Duan H L, Huck W T S, Zhou F, Xue Q J. Adhesion-regulated switchable fluid slippage on superhydrophobic surfaces. J Phys Chem C 118(5): 2564–2569 (2014)
[239]
Jing D L, Bhushan B. The coupling of surface charge and boundary slip at the solid–liquid interface and their combined effect on fluid drag: A review. J Colloid Interf Sci 454: 152–179 (2015)
[240]
Li X M, Tian H M, Shao J Y, Ding Y C, Chen X L, Wang L, Lu B H. Decreasing the saturated contact angle in electrowetting-on-dielectrics by controlling the charge trapping at liquid–solid Interfaces. Adv Funct Mater 26(18): 2994–3002 (2016)
[241]
Shahzad A, Wijewardhana K R, Song J K. Contact electrification efficiency dependence on surface energy at the water–solid interface. Appl Phys Lett 113(2): 023901 (2018)
[242]
Sun Q Q, Wang D H, Li Y N, Zhang J H, Ye S J, Cui J X, Chen L Q, Wang Z K, Butt H J, Vollmer D, et al. Surface charge printing for programmed droplet transport. Nat Mater 18(9): 936–941 (2019)
[243]
Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28(5): 403–412 (2000)
[244]
Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philos Trans A Math Phys Eng Sci 368(1929): 4775–4806 (2010)
[245]
Wen L, Weaver J C, Lauder G V. Biomimetic shark skin: Design, fabrication and hydrodynamic function. J Exp Biol 217(Pt 10): 1656–1666 (2014)
[246]
Tenan M A, Hackwood S, Beni G. Friction in capillary systems. J Appl Phys 53(10): 6687–6692 (1982)
[247]
Tenjimbayashi M, Kawamura K, Shiratori S. Continuous directional water transport on hydrophobic slippery ventral skin of Lampropeltis pyromelana. Adv Mater Interfaces 7(19): 2000984 (2020)
[248]
Chaudhury M K, Whitesides G M. How to make water run uphill. Science 256(5063): 1539–1541 (1992)
[249]
Liu C R, Sun J, Li J, Xiang C H, Che L F, Wang Z K, Zhou X F. Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. Sci Rep 7: 7552 (2017)
[250]
Chu K H, Xiao R, Wang E N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater 9(5): 413–417 (2010)
[251]
Chen H W, Zhang L W, Zhang P F, Zhang D Y, Han Z W, Jiang L. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata. Small 13(4): 1601676 (2017)
[252]
Li J, Zhou X, Li J, Che L, Yao J, McHale G, Chaudhury MK, Wang Z. Topological liquid diode. Sci Adv 3(10): eaao3530 (2017)
[253]
Sun W X, Tang L J, Hong W, Zhan Y J, Yang B, Liu J Q. A novel microstructure inspired from Nepenthes alata and lizard skin and its enhanced uni-directional liquid spreading property. RSC Adv 9(14): 7842–7848 (2019)
[254]
Hou X H, Yu J K, Sheng M K, Yang X. Influencing factors to the friction charging in water delivery metal pipeline. J Electrostat 82: 7–10 (2016)
[255]
Larsson L, Raven H C, Pauling J R. The Principles of Naval Architecture Series: Ship Resistance and Flow. Jersey City (USA): The Society of Naval Architects and Marine Engineers, 2010.
[256]
Luhar M. Turbulence Control—Peace in the pipeline. Nat Phys 14(4): 336–337 (2018)
[257]
Suzuki K, Taketomi T, Sato S. Improving Zielke’s method of simulating frequency-dependent friction in laminar liquid pipe flow. J Fluids Eng 113(4): 569–573 (1991)
[258]
Kurakina M Y, Radchenko V P, Yufin V A. Nonsteady motion of a dropping compressible liquid in pipes under different laws of friction. J Appl Mech Tech Phys 17(1): 69–74 (1976)
[259]
Kühnen J, Song B F, Scarselli D, Budanur N B, Riedl M, Willis A P, Avila M, Hof B. Destabilizing turbulence in pipe flow. Nat Phys 14(4): 386–390 (2018)
[260]
Trikha A K. An efficient method for simulating frequency-dependent friction in transient liquid flow. J Fluids Eng 97(1): 97–105 (1975)
[261]
Vilquin A, Jagielka J, Djambov S, Herouard H, Fisher P, Bruneau C H, Chakraborty P, Gioia G, Kellay H. Asymptotic turbulent friction in 2D rough-walled flows. Sci Adv 7(5): eabc6234 (2021)
[262]
Pucci G, Ho I, Harris D M. Friction on water sliders. Sci Rep 9: 4095 (2019)
[263]
Shugai A A. Friction of solid bodies with formation of a melt layer. J Eng Phys Thermophys 72(5): 963–971 (1999)
[264]
Yang C Y. Friction characteristics of water, R-134a, and air in small tubes. Microsc Therm Eng 7(4): 335–348 (2003)
[265]
Steinke M E, Kandlikar S G. Single-phase liquid friction factors in microchannels. Int J Therm Sci 45(11): 1073–1083 (2006)
[266]
Cottin-Bizonne C, Barrat J L, Bocquet L, Charlaix E. Low-friction flows of liquid at nanopatterned interfaces. Nat Mater 2(4): 237–240 (2003)
[267]
Brutin D, Topin F, Tadrist L. Transient method for the liquid laminar flow friction factor in microtubes. AIChE J 49(11): 2759–2767 (2003)
[268]
Zhang P, Zuo C C, Liu X T. Study on friction coefficient of liquid flow through a rectangular microchannel with electrokinetic effects. In: Proceedings of the 2010 International Conference on Digital Manufacturing & Automation, Changcha, China, 2010: 485–489.
[269]
Mouterde T, Keerthi A, Poggioli A R, Dar S A, Siria A, Geim A K, Bocquet L, Radha B. Molecular streaming and its voltage control in ångström-scale channels. Nature 567(7746): 87–90 (2019)
[270]
Falk K, Sedlmeier F, Joly L, Netz R R, Bocquet L. Ultralow liquid/solid friction in carbon nanotubes: Comprehensive theory for alcohols, alkanes, OMCTS, and water. Langmuir 28(40): 14261–14272 (2012)
[271]
Raviv U, Laurat P, Klein J. Fluidity of water confined to subnanometre films. Nature 413(6851): 51–54 (2001)
[272]
Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414(6860): 188–190 (2001)
[273]
Persson B N J, Tartaglino U, Tosatti E, Ueba H. Electronic friction and liquid-flow-induced voltage in nanotubes. Phys Rev B 69(23): 235410 (2004)
[274]
Sokoloff J B. Effects of electronic friction from the walls on water flow in carbon nanotubes and on water desalination. Phys Rev E 100(2): 023112 (2019)
[275]
Sokoloff J B. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations. Phys Rev E 97(3): 033107 (2018)
[276]
Oyarzua E, Walther J H, Zambrano H A. Water thermophoresis in carbon nanotubes: The interplay between thermophoretic and friction forces. Phys Chem Chem Phys 20(5): 3672–3677 (2018)
[277]
Ma M, Grey F, Shen L M, Urbakh M, Wu S, Liu J Z, Liu Y L, Zheng Q S. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat Nanotechnol 10(8): 692–695 (2015)
[278]
Babu J S, Sathian S P. Combining molecular dynamics simulation and transition state theory to evaluate solid–liquid interfacial friction in carbon nanotube membranes. Phys Rev E 85(5): 051205 (2012)
[279]
Ou J, Perot B, Rothstein J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16(12): 4635–4643 (2004)
[280]
Kim T J, Hidrovo C. Pressure and partial wetting effects on superhydrophobic friction reduction in microchannel flow. Phys Fluids 24(11): 112003 (2012)
[281]
Xia G D, Liu Q M, Qi J Z, Xu J L. Influence of surfactant on friction pressure drop in a manifold microchannel. Int J Therm Sci 47(12): 1658–1664 (2008)
[282]
Jian S J, Lin M J. Effect of smooth microchannel cross section shape on friction factor. In: Proceedings of the 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 2006: 1080–1083.
[283]
Papautsky I, Gale B K, Mohanty S K, Ameel T A, Frazier A B. Effects of rectangular microchannel aspect ratio on laminar friction constant. In: Proceedings of the Symposium on Micromachining and Microfabrication, Santa Clara, USA, 1999: 147–158.
[284]
Sirghi L. Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts. Appl Phys Lett 82(21): 3755–3757 (2003)
[285]
Zamora R R M, Sanchez C M, Freire F L, Prioli R. Influence of capillary condensation of water in nanoscale friction. Phys Status Solidi A 201(5): 850–856 (2004)
[286]
Gluzdov D S, Gatapova E Y. Friction reduction by inlet temperature variation in microchannel flow. Phys Fluids 33(6): 062003 (2021)
[287]
Tesler A B, Kim P, Kolle S, Howell C, Ahanotu O, Aizenberg J. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat Commun 6: 8649 (2015)
[288]
Epstein A K, Wong T S, Belisle R A, Boggs E M, Aizenberg J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. PNAS 109(33): 13182–13187 (2012)
[289]
Wang D H, Sun Q Q, Hokkanen M J, Zhang C L, Lin F Y, Liu Q, Zhu S P, Zhou T F, Chang Q, He B, et al. Design of robust superhydrophobic surfaces. Nature 582(7810): 55–59 (2020)
[290]
Wang N, Zhang R Y, Chan C T. Robust acoustic pulling using chiral surface waves. Phys Rev Appl 15(2): 024034 (2021)
[291]
Wu Y, Liu Z L, Liang Y M, Pei X W, Zhou F, Xue Q J. Switching fluid slippage on pH-responsive superhydrophobic surfaces. Langmuir 30(22): 6463–6468 (2014)
[292]
Seo J H, Tsutsumi Y, Kobari A, Shimojo M, Hanawa T, Yui N. Modulation of friction dynamics in water by changing the combination of the loop- and graft-type poly(ethylene glycol) surfaces. Soft Matter 11(5): 936–942 (2015)
[293]
Schmatko T, Hervet H, Leger L. Friction and slip at simple fluid–solid interfaces: The roles of the molecular shape and the solid–liquid interaction. Phys Rev Lett 94(24): 244501 (2005)
[294]
Zhao X J, Kuang S Y, Wang Z L, Zhu G. Highly adaptive solid–liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12(5): 4280–4285 (2018)
[295]
Li X Y, Tao J, Wang X D, Zhu J, Pan C F, Wang Z L. Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low-frequency blue energy. Adv Energy Mater 8(21): 1800705 (2018)
[296]
Lin Z H, Cheng G, Lin L, Lee S M, Wang Z L. Water–solid surface contact electrification and its use for harvesting liquid-wave energy. Angew Chem Int Ed 52(48): 12545–12549 (2013)
[297]
Wang Y, Gao S W, Xu W H, Wang Z K. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Adv Funct Mater 30(26): 1908252 (2020)
[298]
Wu H, Chen Z F, Xu G Q, Xu J B, Wang Z K, Zi Y L. Fully biodegradable water droplet energy harvester based on leaves of living plants. ACS Appl Mater Inter 12(50): 56060–56067 (2020)
[299]
Jeon S B, Seol M L, Kim D, Park S J, Choi Y K. Self-powered ion concentration sensor with triboelectricity from liquid–solid contact electrification. Adv Electron Mater 2(5): 1600006 (2016)
[300]
He G, Müser M H, Robbins M O. Adsorbed layers and the origin of static friction. Science 284(5420): 1650–1652 (1999)
[301]
Sakuma H, Kawai K, Katayama I, Suehara S. What is the origin of macroscopic friction? Sci Adv 4(12): eaav2268 (2018)
[302]
Luo J B. Investigation on the origin of friction and superlubricity. Chin Sci Bull 65(27): 2966–2978 (2020) (in Chinese)
[303]
Lin S Q, Xu L, Wang A C, Wang Z L. Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer. Nat Commun 11(1): 399 (2020)
[304]
Sun M Z, Lu Q Y, Wang Z L, Huang B L. Understanding contact electrification at liquid–solid interfaces from surface electronic structure. Nat Commun 12(1): 1752 (2021)
[305]
Nie J H, Ren Z W, Xu L, Lin S Q, Zhan F, Chen X Y, Wang Z L. Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface. Adv Mater 32(2): 1905696 (2020)
[306]
Leger L, Joanny J F. Liquid spreading. Rep Prog Phys 55(4): 431–486 (1992)
[307]
Dussan V E B, Davis S H. On the motion of a fluid–fluid interface along a solid surface. J Fluid Mech 65(1): 71–95 (1974)
[308]
Chiricotto M, Giacomelli L. Weak solutions to thin-film equations with contact-line friction. Interface Free Bound 19(2): 243–271 (2017)
[309]
Guo S, Gao M, Xiong X M, Wang Y J, Wang X P, Sheng P, Tong P E. Direct measurement of friction of a fluctuating contact line. Phys Rev Lett 111(2): 026101 (2013)
[310]
Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538(7624): 222–225 (2016)
[311]
Choi C H, Ulmanella U, Kim J, Ho C M, Kim C J. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18(8): 087105 (2006)
[312]
Li J C, Zhu Y B, Xia J, Fan J C, Wu H G, Wang F C. Anomalously low friction of confined monolayer water with a quadrilateral structure. J Chem Phys 154(22): 224508 (2021)
[313]
Zhang L Y, Wu K L, Chen Z X, Li J, Yu X R, Yang S. Molecular-scale friction at a water–graphene interface and its relationship with slip behavior. Phys Fluids 32(9): 092001 (2020)
[314]
Wagemann E, Misra S, Das S, Mitra S K. Quantifying water friction in misaligned graphene channels under ångström confinements. ACS Appl Mater Inter 12(31): 35757–35764 (2020)
[315]
Yang L, Guo Y J, Diao D F. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: Dependence of friction on pressure and confinement. Phys Chem Chem Phys 19(21): 14048–14054 (2017)
[316]
Dai H W, Liu S Y, Zhao M Y, Xu Z J, Yang X N. Interfacial friction of ethanol–water mixtures in graphene pores. Microfluid Nanofluid 20(10): 141 (2016)
[317]
Tamtögl A, Bahn E, Sacchi M, Zhu J D, Ward D J, Jardine A P, Jenkins S J, Fouquet P, Ellis J, Allison W. Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nat Commun 12(1): 3120 (2021)
[318]
Tocci G, Bilichenko M, Joly L, Iannuzzi M. Ab initio nanofluidics: Disentangling the role of the energy landscape and of density correlations on liquid/solid friction. Nanoscale 12(20): 10994–11000 (2020)
[319]
Keerthi A, Goutham S, You Y, Iamprasertkun P, Dryfe R A W, Geim A K, Radha B. Water friction in nanofluidic channels made from two-dimensional crystals. Nat Commun 12(1): 3092 (2021)
[320]
Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, Janardanan A, Yang Q, Radha B, Taniguchi T, Watanabe K, et al. Anomalously low dielectric constant of confined water. Science 360(6395): 1339–1342 (2018)
[321]
Luan B Q, Zhou R H. Wettability and friction of water on a MoS2 nanosheet. Appl Phys Lett 108(13): 131601 (2016)
[322]
Lee H, Jeong H, Suh J, Doh W H, Baik J, Shin H J, Ko J H, Wu J Q, Kim Y H, Park J Y. Nanoscale friction on confined water layers intercalated between MoS2 flakes and silica. J Phys Chem C 123(14): 8827–8835 (2019)
[323]
Wang H J, Zhang Z H, Zheng J, Zhao J, Liang Y H, Li X J, Ren L Q. Multifunctional superhydrophobic surface with dynamically controllable micro/nanostructures for droplet manipulation and friction control. Chem Eng J 417: 127944 (2021)
[324]
Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, Walheim S, Weis A, Kaltenmaier A, Leder A, et al. The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater 22(21): 2325–2328 (2010)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 May 2022
Revised: 09 September 2022
Accepted: 27 September 2022
Published: 13 March 2023
Issue date: December 2023

Copyright

© The author(s) 2022.

Acknowledgements

This work was supported by the funding from Health@InnoHK (Hong Kong Centre for Cerebro–cardiovascular Health Engineering (COCHE)), the Innovation and Technology Commission, the Government of the Hong Kong Special Administrative Region of the People’s Republic of China, the National Natural Science Foundation of China (12102250), and China Postdoctoral Science Foundation (2020TQ0190 and 2020M681290).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return