References(50)
[1]
Martin J M, Donnet C, Mogne T L, Epicier T. Superlubricity of molybdenum disulphide. Phys Rev B 48(14): 10583–10586 (1993)
[2]
Vu C C, Zhang S, Urbakh M, Li Q, He Q C, Zheng Q. Observation of normal-force-independent superlubricity in mesoscopic graphite contacts. Phys Rev B 94(8): 081405 (2016)
[3]
Kawai S, Benassi A, Gnecco E, Sode H, Pawlak R, Feng X, Duperlubricity of graphene nanoribbons on gold surfaces. Science 351(6276): 957–961 (2016)
[4]
Berman D, Deshmukh S A, Sankaranarayanan S K R S, Erdemir A, Sumant A V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348(6239): 1118–1122 (2015)
[5]
Wang C B, Yang S G, Wang Q, Wang Z, Zhang J Y. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure. Nanotechnol 19(22): 225709 (2008)
[6]
Li J, Zhang C, Luo J. Superlubricity behavior with phosphoric acid–water network induced by rubbing. Langmuir 27(15): 9413–9417 (2011)
[7]
Hirano M, Shinjo K. Atomistic locking and friction. Phys Rev B 41(17): 11837–11851 (1990)
[8]
Hirano M, Shinjo K, Kaneko R, Murata Y. Anisotropy of frictional forces in muscovite mica. Phys Rev Lett 67(19): 2642–2645 (1991)
[9]
Martin J M, Donnet C, Mogne L T, Epicier T. Superlubricity of molybdenum disulphide. Phys Rev B 48(14): 10583–10586 (1993)
[10]
Berman D, Deshmukh S A, Sankaranarayanan S K R S, Erdemir A, Sumant A V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348(6239): 1118–1122 (2015)
[11]
Li J, Zhang C, Luo J. Superlubricity behavior with phosphoric acid–water network induced by rubbing. Langmuir 27(15): 9413–9417 (2011)
[12]
Tomizawa H, Fischer T E. Friction and wear of silicon nitride and silicon carbide in water: hydrodynamic lubrication at low sliding speed obtained by tribochemical wear. ASLE Trans 30(1): 41–46 (1986)
[13]
Xu J, Kato K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear 245(1–2): 61–75 (2000)
[14]
Ge X Y, Li J J, Zhang C H, Luo J B. Liquid superlubricity of polyethylene glycol aqueous solution achieved with boric acid additive. Langmuir 34(12): 3578–3587 (2018)
[15]
Ge X Y, Li J J, Zhang C H, Wang Z N, Luo J B. Superlubricity of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid induced by tribochemical reactions. Langmuir 34(18): 5245–5252 (2018)
[16]
Isabel D B B M, Martin J M, Avila J, Kano M, Yoshida K, Tsuruda T, Bai S, Higuchi Y, Ozawa N, Kubo M, Asensio M C. Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction. Sci Rep 7: 46394 (2017)
[17]
Li J J, Zhang C H, Deng M M, Luo J B. Superlubricity of silicone oil achieved between two surfaces by running-in with acid solution. Rsc Adv 5(39): 30861–30868 (2015)
[18]
Ron T, Javakhishvili I, Hvilsted S, Jankova K, Lee S. Ultralow friction with hydrophilic polymer brushes in water as segregated from silicone matrix. Adv Mater Interfaces 3(2): 1500472 (2016)
[19]
Zhang C X, Liu Y H, Liu Z F, Zhang H Y, Cheng Q, Yang Q B. Regulation mechanism of salt ions for superlubricity of hydrophilic polymer cross-linked networks on Ti6Al4V. Langmuir 33(9): 2133–2140 (2017)
[20]
Ge X Y, Li J J, Luo R, Zhang C H, Luo J B. Macroscale superlubricity enabled by synergy effect of graphene-oxide nanoflakes and ethanediol. ACS Appl Mater Interfaces 10(47): 40863–40870 (2018)
[21]
Liu Z, Yang J R, Grey F, Zheng Q. Observation of microscale superlubricity in graphite. Phys Rev Lett 108(20): 205503 (2012)
[22]
Yang J R, Liu Z, Grey F, Zheng Q. Observation of high-speed microscale superlubricity in graphite. Phys Rev Lett 110(25): 255504 (2013)
[23]
Vu C C, Zhang S, Urbakh M, Zheng Q. Observation of normal-force-independent superlubricity in mesoscopic graphite contacts. Phys Rev B 94(8): 081405 (2016)
[24]
Deng H, Ma M, Song Y, Zheng Q. Structural superlubricity in graphite flakes assembled under ambient conditions. Nanoscale 10(29): 14314–14320 (2018)
[25]
Li J, Gao T, Luo J. Superlubricity of graphite induced by multiple transferred graphene nanoflakes. Adv Sci 5(3): 1700616 (2018)
[26]
Ge X, Li J, Luo J B. Macroscale superlubricity achieved with various liquid molecules: A review. Front Mech Eng 5(2): 00002 (2019)
[27]
Tan X F, Luo J B. Research advances of lubrication. Chin Mech Eng 31(2): 145–174 (2020)
[28]
Yi S, Ge X Y, Li J J. Development and prospects of liquid superlubricity. J Tsinghua Univ (Sci & Technol) 60(8): 617–629 (2020)
[29]
Baykara M Z, Vazirisereshk M R, Martini A. Emerging superlubricity: A review of the state of the art and perspectives on future research. Appl Phys Rev 5: 041102 (2018)
[30]
Gao X L, Chen H, Lv S C, Zhang Z Y, Wang T T. Preliminary study of the superlubricity behavior of polyimide-induced liquid crystal alignment. J Tribol 144(4): 041901 (2022).
[31]
Fang Y Q, Zhang Q, Wang Y H. Effects of variety of liquid crystals and process conditions on pretilt angle. Polym Mater Sci Eng 25(011): 69–71 (2009)
[32]
Kizilkaya C, Mülazim Y, Kahraman M V, Apohan N K, Güngör A. Synthesis and characterization of polyimide/hexagonal boron nitride composite. J Appl Polym Sci 124(1): 706–712 (2012)
[33]
Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog Polym Sci 37(7): 907–974 (2012)
[34]
Fischer T E, Bhattacharya S, Salher R, Lauer J L, Ahn Y J. Lubrication by a smectic liquid crystal. Tribol Trans 31(4): 442–448 (1988)
[35]
Mori S, Iwata H. Relationship between tribological performance of liquid crystals and their molecular structure. Tribol Int 29(1): 35–39 (1996)
[36]
Tadokoro C, Nihira T, Nakano K. Minimization of friction at various speeds using autonomous viscosity control of nematic liquid crystal. Tribol Lett 56(2): 239–247 (2014)
[37]
Ghosh P, Upadhyay M, Das M K. Studies on the additive performance of liquid crystal blended polyacrylate in lubricating oil. Liq Cryst 41(1): 30–35 (2014)
[38]
Wazynska B, Tykarska M, Okowiak-Chinalska J. The estimation of abilities of liquid-crystalline compounds dissolved in paraffin oil for accumulation on solid surface. Mol Cryst Liq Cryst 546(1): 1633–1638 (2011)
[39]
Guo C J. Preparation of liquid crystal vertical alignment agent and preliminary inquiry of the mechanism of alignment of liquid crystal. M.A. Thesis. Chengdu (China): Sichuan University, 2012.
[40]
Liu L L, Liu M, Gong S M, Wang Y H. Properties of polyimide liquid crystal alignment layer with different backbone structure. Chin J Liq Cryst Disp 30(5): 757–762 (2015)
[41]
Zhang R, Peng Z H, Liu Y G, Xuan Li, Zhang Z Y. Synthesis and properties low viscosity of high birefringence and liquid crystal. Chin J Liq Cryst Disp 24(6): 789–793 (2009)
[42]
Naoki I, Kenji S, Ryuichi A, Sukekatsu U. Relation between the molecular orientations of a very thin liquid crystal layer and an underlying rubbed polyimide film. J Appl Phys 88(6): 3235–3241 (2000)
[43]
Chen W, Feller M B, Shen Y R. Investigation of anisotropic molecular orientational distributions of liquid crystal monolayers by optical second-harmonic generation. Phys Rev Lett 63: 2665–2668 (1989)
[44]
Geary J M, Goodby J W, Kmetz A R, Patel, J S. The mechanism of polymer alignment of liquid crystal materials. J Appl Phys 62(10): 4100–4107 (1987)
[45]
Ahmad M Z, Pelletier H, Martin-Gil V, Castro-Muñoz R, Fila V. Chemical crosslinking of 6FDA–ODA and 6FDA–ODA: DABA for improved CO2/CH4 separation. Membranes 8: 67 (2018)
[46]
Xiao S, Huang R, Feng X. Synthetic 6FDA–ODA copolyimide membranes for gas separation and pervaporation: Functional groups and separation properties. Polymer 48(18): 5355–5368 (2007)
[47]
Liu L L, Liu M, Gong S M, Wang Y H. Properties of polyimide liquid crystal alignment layer with different backbone structure. Chin J Liq Cryst Disp 30(5): 757–762 (2015)
[48]
Zhou D, Li L, Xue G, Ge J J, Xue C C, Cheng S Z D. Molecular orientation and relaxation on a surface of a thin film of polymeric liquid crystalline. Langmuir 18(12): 4559–4561 (2002)
[49]
Moskovits M. Surface selection rules. J Chem Phys 77(9): 4408–4418 (1982)
[50]
Wonseok D, Sang-Hyon P. Chemical structure effects of polyimides on the alignment and electro-optical properties of liquid crystal cells. Macromol Res 12(3): 251–257 (2004)