References(55)
[1]
Patel U, Rawal S, Bose B, Arif A F M, Veldhuis S. Performance evaluations of Ti-based PVD coatings deposited on cermet tools for high-speed dry finish turning of AISI 304 stainless steel. Wear 492–493: 204214 (2022)
[2]
Kumar D D, Kaliaraj G S. Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications. J Mech Behav Biomed Mater 77: 106–115 (2018)
[3]
Heidari L, Hadianfard M J, Khalifeh A R, Vashaee D, Tayebi L. Fabrication of nanocrystalline austenitic stainless steel with superior strength and ductility via binder assisted extrusion method. Powder Technol 379: 38–48 (2021)
[4]
Zhang Z Y, Wang B, Kang R K, Zhang B, Guo D M. Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann-Manuf Techn 64(1): 349–352 (2015)
[5]
Wang B, Zhang Z Y, Chang K K, Cui J F, Rosenkranz A, Yu J H, Lin C T, Chen G X, Zang K T, Luo J, et al. New deformation-induced nanostructure in silicon. Nano Lett 18(7): 4611–4617 (2018)
[6]
Zhang Z Y, Wang X, Meng F N, Liu D D, Huang S L, Cui J F, Wang J M, Wen W. Origin and evolution of a crack in silicon induced by a single grain grinding. J Manuf Process 75: 617–626 (2022)
[7]
Zhang Z Y, Du Y F, Huang S L, Meng F N, Chen L L, Xie W X, Chang K K, Zhang C H, Lu Y, Lin C T, et al. Macroscale superlubricity enabled by graphene-coated surfaces. Adv Sci 7(4): 1903239 (2020)
[8]
Alam M K, Edrisy A, Urbanic J, Pineault J. Microhardness and stress analysis of laser-cladded AISI 420 martensitic stainless steel. J Mater Eng Perform 26(3): 1076–1084 (2017)
[9]
Wang H D, Ma G Z, Xu B S, Yong Q S, He P F. Design and application of friction pair surface modification coating for remanufacturing. Friction 5(3): 351–360 (2017)
[10]
Paydas H, Mertens A, Carrus R, Lecomte-Beckers J, Tchuindjang J T. Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness. Mater Design 85: 497–510 (2015)
[11]
Sun S D, Liu Q C, Brandt M, Janardhana M, Clark G. Microstructure and mechanical properties of laser cladding repair of AISI 4340 steel. In: Proceedings of the 28th International Congress of the Aeronautical Sciences, Brisbane, Australia, 2012: 1–9.
[12]
Li R D, Niu P D, Yuan T C, Cao P, Chen C, Zhou K C. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property. J Alloys Compd 746: 125–134 (2018)
[13]
Long Y T, Nie P L, Li Z G, Huang J, Li X, Xu X M. Segregation of niobium in laser cladding Inconel 718 superalloy. T Nonferr Metal Soc 26(2): 431–436 (2016)
[14]
Xin B, Ren J Y, Wang X Q, Zhu L D, Gong Y D. Effect of laser remelting on cladding layer of Inconel 718 superalloy formed by laser metal deposition. Materials 13(21): 4927 (2020)
[15]
Feldshtein E, Kardapolava M, Dyachenko O. On the effectiveness of multi-component laser modifying of Fe-based self-fluxing coating with hard particulates. Surf Coat Tech 307: 254–261 (2016)
[16]
Khorasani A M, Gibson I, Awan U S, Ghaderi A. The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti–6Al–4V. Addit Manuf 25: 176–186 (2019)
[17]
Thawari N, Gullipalli C, Chandak A, Gupta T V K. Influence of laser cladding parameters on distortion, thermal history and melt pool behaviour in multi-layer deposition of stellite 6: In-situ measurement. J Alloys Compd 860: 157894 (2021)
[18]
Stachowiak A, Zwierzycki W. Tribocorrosion modeling of stainless steel in a sliding pair of pin-on-plate type. Tribol Int 44(10): 1216–1224 (2011)
[19]
Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution. Mater Chem Phys 129(1–2): 138–147 (2011)
[20]
Bontha S, Klingbeil N W, Kobryn P A, Fraser H L. Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J Mater Process Tech 178(1–3): 135–142 (2006)
[21]
Shittu J, Sadeghilaridjani M, Pole M, Muskeri S, Ren J, Liu Y F, Tahoun I, Arora H, Chen W, Dahotre N, et al. Tribo-corrosion response of additively manufactured high-entropy alloy. Npj Mat Degrad 5: 31 (2021)
[22]
Liu H X, Ji S W, Jiang Y H, Zhang X W, Wang C Q. Microstructure and property of Fe60 composite coatings by rotating magnetic field auxiliary laser cladding. Chin J Lasers 40(1): 0103007 (2013) (in Chinese)
[23]
Fu L S, Fu X S, Chen G Q, Han W B, Zhou W L. Tailoring the morphology in Y2O3 doped melt-grown Al2O3/ZrO2 eutectic ceramic. Scripta Mater 129: 20–24 (2017)
[24]
Sha J B, Hirai H, Tabaru T, Kitahara A, Ueno H, Hanada S. High-temperature strength and room-temperature toughness of Nb–W–Si–B alloys prepared by arc-melting. Mat Sci Eng A-Struct 364(1–2): 151–158 (2004)
[25]
López A, Bayón R, Pagano F, Igartua A, Arredondo A, Arana J L, González J J. Tribocorrosion behaviour of mooring high strength low alloy steels in synthetic seawater. Wear 338–339: 1–10 (2015)
[26]
Wang L, Wang N, Yao W J, Zheng Y P. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys. Acta Mater 88: 283–292 (2015)
[27]
Zhang L, Shen H F, Rong Y M, Huang T Y. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Mat Sci Eng A-Struct 466(1–2): 71–78 (2007)
[28]
Sun W T, Wang B, Liu X L, Wang Y Q, Zhang J. Controlling the tribology performance of gray cast iron by tailoring the microstructure. Tribol Int 167: 107343 (2022)
[29]
Sun W T, Zhou W L, Liu J F, Fu X S, Chen G Q, Yao S. The size effect of SiO2 particles on friction mechanisms of a composite friction material. Tribol Lett 66(1): 35 (2018)
[30]
Eriksson M, Jacobson S. Tribological surfaces of organic brake pads. Tribol Int 33(12): 817–827 (2000)
[31]
Ling Z C, Chen W P, Lu T W, Li B, Zhang X M. Interfacial morphology and tribo-corrosion behaviour of Fe–15.3 wt% Cr–3.1 wt% B–6.2 wt% Mo alloy in molten aluminium. Wear 430–431: 81–93 (2019)
[32]
Zhang B B, Wang J Z, Liu H, Yan Y F, Jiang P F, Yan F Y. Tribocorrosion properties of AISI 1045 and AISI 2205 steels in seawater: Synergistic interactions of wear and corrosion. Friction 9(5): 929–940 (2021)
[33]
Bidiville A, Favero M, Stadelmann P, Mischler S. Effect of surface chemistry on the mechanical response of metals in sliding tribocorrosion systems. Wear 263(1–6): 207–217 (2007)
[34]
Perret J, Boehm-Courjault E, Cantoni M, Mischler S, Beaudouin A, Chitty W, Vernot J P. EBSD, SEM and FIB characterisation of subsurface deformation during tribocorrosion of stainless steel in sulphuric acid. Wear 269(5–6): 383–393 (2010)
[35]
Abbasi E, Rainforth W M. Microstructural evolution of Nb–V–Mo and V containing TRIP-assisted steels during thermomechanical processing. J Mater Sci Technol 33(4): 311–320 (2017)
[36]
Zhu T, Gao H J. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling. Scripta Mater 66(11): 843–848 (2012)
[37]
Dundurs J. Cavities vis-à-vis rigid inclusions and some related general results in plane elasticity. J Appl Mech-T ASME 56(4): 786–790 (1989)
[38]
Xiao B, Xing J D, Ding S F, Su W. Stability, electronic and mechanical properties of Fe2B. Physica B 403(10–11): 1723–1730 (2008)
[39]
Li M S, Fu S L, Xu W D, Zhang R L, Yu R H. Valence electron structure of Fe2B phase and its eigen-brittleness. Acta Metall Sin 31(5): 201–208 (1995) (in Chinese)
[40]
Liu M, Duan D L, Jiang S L, Li M Y, Li S. Tribocorrosion behavior of 304 stainless steel in 0.5 mol/L sulfuric acid. Acta Metall Sin-Engl 31(10): 1049–1058 (2018)
[41]
Cao S F, Mischler S. Modeling tribocorrosion of passive metals—A review. Curr Opin Solid St M 22(4): 127–141 (2018)
[42]
Saffar A, Shojaei A. Effect of rubber component on the performance of brake friction materials. Wear 274–275: 286–297 (2012)
[43]
Österle W, Griepentrog M, Gross T, Urban I. Chemical and microstructural changes induced by friction and wear of brakes. Wear 251(1–12): 1469–1476 (2001)
[44]
Cho M H, Kim S J, Basch R H, Fash J W, Jang H. Tribological study of gray cast iron with automotive brake linings: The effect of rotor microstructure. Tribol Int 36(7): 537–545 (2003)
[45]
Qin L Y, Lian J S, Jiang Q. Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni. T Nonferr Metal Soc 20(1): 82–89 (2010)
[46]
Kuang W J, Was G S. The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled Alloy 690. Corros Sci 97: 107–114 (2015)
[47]
Li H L, Yin Z W, Jiang D, Jin L Y, Cui Y Q. A study of the tribological behavior of transfer films of PTFE composites formed under different loads, speeds and morphologies of the counterface. Wear 328–329: 17–27 (2015)
[48]
Archard J F. Contact and rubbing of flat surfaces. J Appl Phys 24(8): 981–988 (1953)
[49]
Chen H, Zhao D, Wang Q L, Qiang Y H, Qi J W. Effects of impact energy on the wear resistance and work hardening mechanism of medium manganese austenitic steel. Friction 5(4): 447–454 (2017)
[50]
Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution. Mater Chem Phys 129(1–2): 138–147 (2011)
[51]
Ren P W, Meng H M, Xia Q J, Zhu Z Z, He M T. Tribocorrosion of 316L stainless steel by in situ electrochemical methods under deep-sea high hydrostatic pressure environment. Corros Sci 202: 110315 (2022)
[52]
Liang H, Qiao D X, Miao J W, Cao Z Q, Jiang H, Wang T M. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater. J Mater Sci Technol 85: 224–234 (2021)
[53]
Landolt D, Mischler S, Stemp M, Barril S. Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256(5): 517–524 (2004)
[54]
Cho E A, Kim C K, Kim J S, Kwon H S. Quantitative analysis of repassivation kinetics of ferritic stainless steels based on the high field ion conduction model. Electrochim Acta 45(12): 1933–1942 (2000)
[55]
Zhang H B, Etsion I. An advanced efficient model for adhesive wear in elastic–plastic spherical contact. Friction 10(8): 1276–1284 (2022)