References(173)
[1]
Sheikholeslami M, Ganji D D. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75: 400–410 (2014)
[2]
Rosensweig R E. Magnetic fluids. Annu Rev Fluid Mech 19: 437–463 (1987)
[3]
Rinaldi C, Chaves A, Elborai S, He X, Zahn M. Magnetic fluid rheology and flows. Curr Opin Colloid Interface Sci 10(3–4): 141–157 (2005)
[4]
Afifah A N, Syahrullail S, Sidik N. Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review. Renew Sustain Energy Rev 55: 1030–1040 (2016)
[5]
Alberto N, Domingues M F, Marques C, André P, Antunes P. Optical fiber magnetic field sensors based on magnetic fluid: A review. Sensors 18(12): 4325 (2018)
[6]
Li Y W, Li D C. The dynamics analysis of a magnetic fluid shock absorber with different inner surface materials. J Magn Magn Mater 542: 168473 (2022)
[7]
Chen N, Li D C, Xue J Y, Yin Y, Li Y M. Magnetic fluid sealing status estimation based on acoustic emission monitoring. Frontiers in Materials 5: 465 (2022)
[8]
Li D C, Li Y W, Li Z P. Combined sealing device with magnetic fluid. U.S. Patent 17 508 166, Oct. 2021.
[9]
Kabei N, Sakurai Y, Tsuchiya K. Characteristics of magneto-fluidic control devices which use magnetic fluid as working fluid. In: Fluid Control and Measurement. Harada M, Ed. Oxford (UK): Pergamon Press, 1986: 457–462.
[10]
Komaee A. Feedback control for transportation of magnetic fluids with minimal dispersion: A first step toward targeted magnetic drug delivery. IEEE Trans Control Syst Technol 25(1): 129–144 (2017)
[11]
Kurian J, Lahiri B B, Mathew M J, Philip J. High magnetic fluid hyperthermia efficiency in copper ferrite nanoparticles prepared by solvothermal and hydrothermal methods. J Magn Magn Mater 538: 168233 (2021)
[12]
Chan M H, Hsieh M R, Liu R S, Wei D H, Hsiao M. Magnetically guided theranostics: Optimizing magnetic resonance imaging with sandwich-like kaolinite-based iron/platinum nanoparticles for magnetic fluid hyperthermia and chemotherapy. Chem Mater 32(2): 697–708 (2020)
[13]
Urreta H, Aguirre G, Kuzhir P, de Lacalle L N L. Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools. J Intell Mater Syst Struct 30(15): 2257–2271 (2019)
[14]
Li D C. Theory and Application of Magnetic Fluid Sealing. Beijing (China): Science Press, 2010. (in Chinese)
[15]
Papell S S. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. U.S. Patent 3 215 572, Nov. 1965.
[16]
Khalafalla S E, Reimers G W. Magnetofluids and their manufacture. U.S. Patent 3 764 540, Oct. 1973.
[17]
Reimers G W, Khalafalla S E. Production of magnetic fluids by peptization techniques. U.S. Patent 3 843 540, Oct. 1974.
[18]
Mitu S A, Ahmed K, Bui F M, Nithya P, Al-Zahrani F A, Mollah M A, Rajan M S M. Novel nested anti-resonant fiber based magnetic fluids sensor: Performance and bending effects inspection. J Magn Magn Mater 538: 168230 (2021)
[19]
Zhao Y, Wang X X, Lv R Q, Li G L, Zheng H K, Zhou Y F. Highly sensitive reflective fabry–perot magnetic field sensor using magnetic fluid based on vernier effect. IEEE Trans Instrum Meas 70: 7000808 (2021)
[20]
Li Y X, Pu S L, Hao Z J, Yan S K, Zhang Y X, Lahoubi M. Vector magnetic field sensor based on U-bent single-mode fiber and magnetic fluid. Opt Express 29(4): 5236–5246 (2021)
[21]
Li Y W, Han P D, Li D C, Chen S Y, Wang Y M. Typical dampers and energy harvesters based on characteristics of ferrofluids. Friction 11(2): 165-186 (2023)
[22]
Li Y W, Li D C, Li Y S. Performance tests and design of a series of magnetic fluid shock absorbers with varying stiffness based on optimal stiffness formula. Frontiers in Materials 9: 1011550 (2023)
[23]
Li D C, Li Y W, Ren S J. Magnetic liquid damping shock absorber. U.S. Patent 17 507 245, Oct. 2021.
[24]
Jia J J, Yang G B, Zhang C L, Zhang S M, Zhang Y J, Zhang P Y. Effects of magnetic ionic liquid as a lubricant on the friction and wear behavior of a steel–steel sliding contact under elevated temperatures. Friction 9(1): 61–74 (2021)
[25]
Xu M C, Dai Q W, Huang W, Wang X L. Using magnetic fluids to improve the behavior of ball bearings under starved lubrication. Tribol Int 141: 105950 (2020)
[26]
Li D C, Li Y W, Chen S Y. Chain unit sealed and lubricated with magnetic fluid and chain having same. U.S. Patent 17 507 520, Oct. 2021.
[27]
Ouyang Y B, Qiu R, Xiao Y M, Shi Z Q, Hu S G, Zhang Y, Chen M, Wang P. Magnetic fluid based on mussel inspired chemistry as corrosion-resistant coating of NdFeB magnetic material. Chem Eng J 368: 331–339 (2019)
[28]
Sinzato Y Z, Cunha F R. Modeling and experiments of capillary flow of non-symmetric magnetic fluids under uniform field. J Magn Magn Mater 508: 166867 (2020)
[29]
Hao R C, Liu H G, Feng Z X. Research on magnetism and magnetization intensity of magnetic fluid. J Phys Conf Ser 1637(1): 012061 (2020)
[30]
Andò B, Baglio S, Marletta V, Pistorio A. A magnetic fluid-based inclinometer embedding an optical readout strategy: Modeling and characterization. IEEE Trans Instrum Meas 69(8): 5922–5929 (2020)
[31]
Pilati V, Gomide G, Gomes R C, Goya G F, Depeyrot J. Colloidal stability and concentration effects on nanoparticle heat delivery for magnetic fluid hyperthermia. Langmuir 37(3): 1129–1140 (2021)
[32]
Parmar S, Ramani V, Upadhyay R V, Parekh K. Two stage magnetic fluid vacuum seal for variable radial clearance. Vacuum 172: 109087 (2020)
[33]
Vasilescu C, Latikka M, Knudsen K D, Garamus V M, Socoliuc V, Turcu R, Tombácz E, Susan-Resiga D, Ras R H A, Vékás L. High concentration aqueous magnetic fluids: Structure, colloidal stability, magnetic and flow properties. Soft Matter 14(32): 6648–6666 (2018)
[34]
Mizuta Y. Dynamic analysis on magnetic fluid interface validated by physical laws. J Magn Magn Mater 431: 209–213 (2017)
[35]
Bateer B, Qu Y, Meng X Y, Tian C G, Du S C, Wang R H, Pan K, Fu H G. Preparation and magnetic performance of the magnetic fluid stabilized by bi-surfactant. J Magn Magn Mater 332: 151–156 (2013)
[36]
Odenbach S. Recent progress in magnetic fluid research. J Phys Condens Matter 16(32): R1135–R1150 (2004)
[37]
Torres-Díaz I, Rinaldi C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter 10(43): 8584–8602 (2014)
[38]
Li D C, Hao D H. Major problems and solutions in applications of magnetic fluid rotation seal. Chin J Vac Sci Technol 38(7): 564–574 (2018) (in Chinese)
[39]
Zhang X, Sun L, Yu Y, Zhao Y. Flexible ferrofluids: Design and applications. Adv Mater 31(51): 1903497 (2019)
[40]
Kole M, Khandekar S. Engineering applications of ferrofluids: A review. J Magn Magn Mater 537: 168222 (2021)
[41]
Li Z X. Magnetic fluid seals for DWDM filter manufacturing. J Magn Magn Mater 252: 327–329 (2002)
[42]
Basak M, Rahman M L, Ahmed M F, Biswas B, Sharmin N. Calcination effect on structural, morphological and magnetic properties of nano-sized CoFe2O4 developed by a simple co-precipitation technique. Mater Chem Phys 264: 124442 (2021)
[43]
Eskandari M J, Hasanzadeh I. Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation. Mater Sci Eng B 266: 115050 (2021)
[44]
Sharifi I, Zamanian A, Behnamghader A. Synthesis and characterization of Fe0.6Zn0.4Fe2O4 ferrite magnetic nanoclusters using simple thermal decomposition method. J Magn Magn Mater 412: 107–113 (2016)
[45]
Hwang J, Choi M, Shin H S, Ju B K, Chun M. Structural and magnetic properties of NiZn ferrite nanoparticles synthesized by a thermal decomposition method. Appl Sci 10(18): 6279 (2020)
[46]
Kimoto K, Kamiya Y, Nonoyama M, Uyeda R. An electron microscope study on fine metal particles prepared by evaporation in argon gas at low pressure. Jpn J Appl Phys 2(11): 702–713 (1963)
[47]
Nakatani I, Furubayashi T. Iron-nitride magnetic fluids prepared by plasma CVD technique and their magnetic properties. J Magn Magn Mater 85(1–3): 11–13 (1990)
[48]
Pei L, Xuan S H, Pang H M, Gong X L. Influence of interparticle friction on the magneto-rheological effect for magnetic fluid: A simulation investigation. Smart Mater Struct 29(11): 115002 (2020)
[49]
He Q, Huang W F, Yin Y, Hu Y, Li Y W, Li D C. An improved lattice Boltzmann model for fluid–fluid–solid flows with high viscosity ratio. Phys. Fluids 34(9): 093322 (2022)
[50]
Skumiel A, Kopcansky P, Timko M, Molcan M, Paulovicova K, Wojciechowski R. The influence of a rotating magnetic field on the thermal effect in magnetic fluid. Int J Therm Sci 171: 107258 (2022)
[51]
Kumar Mohapatra D, Zubarev A, Safronov A, Philip J. Reconfiguring nanostructures in magnetic fluids using pH and magnetic stimulus for tuning optical properties. J Magn Magn Mater 539: 168351 (2021)
[52]
Sharova O A, Merkulov D I, Pelevina D A, Vinogradova A S, Naletova V A. Motion of a spherical magnetizable body along a layer of magnetic fluid in a uniform magnetic field. Phys Fluids 33(8): 087107 (2021)
[53]
Borin D, Müller R, Odenbach S. Magnetoviscosity of a magnetic fluid based on Barium hexaferrite nanoplates. Materials 14(8): 1870 (2021)
[54]
Lebedev A V. Stabilization of magnetic fluid with polydimethylsiloxane kills three birds with one stone. Soft Mater (2021).
[55]
Szczęch M. Theoretical analysis and experimental studies on torque friction in magnetic fluid seals. Proc Inst Mech Eng Part J J Eng Tribol 234(2): 274–281 (2020)
[56]
Szydło Z, Szczech M. Investigation of dynamic magnetic fluid seal wear process in utility water environment. Key Eng Mater 490: 143–155 (2011)
[57]
Pugachev A O, Ravikovich Y A, Savin L A. Flow structure in a short chamber of a labyrinth seal with a backward-facing step. Comput Fluids 114: 39–47 (2015)
[58]
Sun J J, Ma C B, Yu Q P, Lu J H, Zhou M, Zhou P Y. Numerical analysis on a new pump-out hydrodynamic mechanical seal. Tribol Int 106: 62–70 (2017)
[59]
Ha Y, Ha T, Byun J, Lee Y. Leakage effects due to bristle deflection and wear in hybrid brush seal of high-pressure steam turbine. Tribol Int 150: 106325 (2020)
[60]
Nayebi R, Shemirani F. Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. Trac Trends Anal Chem 138: 116232 (2021)
[61]
Zhang Y J, Chen Y B, Li D C, Yang Z M, Yang Y L. Experimental validation and numerical simulation of static pressure in multi-stage ferrofluid seals. IEEE Trans Magn 55(3): 4600308 (2019)
[62]
Neuringer J L, Rosensweig R E. Ferrohydrodynamics. Phys. Fluids 7: 1927 (1964)
[63]
Cowley M D, Rosensweig R E. The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30(4): 671–688 (1967)
[64]
Han S N, Li J, Gao R L, Zhang T Z, Wen B C. Study of magnetisation behaviours for binary ionic ferrofluids. J Exp Nanosci 4(1): 9–19 (2009)
[65]
Zhang H, Wang S. Near magnetic field assessment and reduction for magnetic inductors with magnetic moment analysis. IEEE Trans Power Electron 37(2): 1641–1652 (2022)
[66]
Jia X Y, Lin M, Su S W, Wang Q W, Yang J. Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer. Energy 239: 121788 (2022)
[67]
Ghorbani S, Moghadam A J, Emamian A, Ellahi R, Sait S M. Numerical simulation of the electroosmotic flow of the Carreau–Yasuda model in the rectangular microchannel. Int J Numer Methods Heat Fluid Flow 32(7): 2240–2259 (2022)
[68]
Kanno T, Kouda Y, Takeishi Y, Minagawa T, Yamamoto Y. Preparation of magnetic fluid having active-gas resistance and ultra-low vapor pressure for magnetic fluid vacuum seals. Tribol Int 30(9): 701–705 (1997)
[69]
Wang H J, Li D C, Zhen S B, He X Z, Wang S Q. Comparative study of the failure pressure between sealing liquids and gas with magnetic fluid. Food&Mach 32(11): 68–70, 101 (2016) (in Chinese)
[70]
Zhang W F, Wu K X, Gu C J, Tian H Y, Zhang X B, Li C. Swirl brakes optimization for rotordynamic performance improvement of labyrinth seals using computational fluid dynamics method. Tribol Int 159: 106990 (2021)
[71]
Hur M S, Moon S W, Kim T S. A study on the leakage characteristics of a stepped labyrinth seal with a ribbed casing. Energies 14(13): 3719 (2021)
[72]
Zhou W J, Zhao Z B, Wang Y F, Shi J L, Gan B, Li B, Qiu N. Research on leakage performance and dynamic characteristics of a novel labyrinth seal with staggered helical teeth structure. Alex Eng J 60(3): 3177–3187 (2021)
[73]
Chen T Y, Ji J H, Fu Y H, Yang X P, Fu H, Fang L N. Tribological performance of UV picosecond laser multi-scale composite textures for C/SiC mechanical seals: Theoretical analysis and experimental verification. Ceram Int 47(16): 23162–23180 (2021)
[74]
Jin J, Peng X D, Meng X K, Zhao W J, Jiang J B. Analysis of stability of two-phase flow mechanical seal with spiral groove under high speeds. J Braz Soc Mech Sci Eng 43(5): 260 (2021)
[75]
Su W T, Li Y, Wang Y H, Zhang Y N, Li X B, Ma Y. Influence of structural parameters on wavy-tilt-dam hydrodynamic mechanical seal performance in reactor coolant pump. Renew Energ 166: 210–221 (2020)
[76]
Hildebrandt M, Schwitzke C, Bauer H J. Analysis of heat flux distribution during brush seal rubbing using CFD with porous media approach. Energies 14(7): 1888 (2021)
[77]
Fan J J, Ji H H, Wang Q, Hu Y P, Kong X Y. A combined theoretical and experimental study of wear model of brush seal. Tribol Int 154: 106696 (2021)
[78]
Kang Y C, Liu M H, Kao-Walter S, Reheman W, Liu J B. Predicting aerodynamic resistance of brush seals using computational fluid dynamics and a 2-D tube banks model. Tribol Int 126: 9–15 (2018)
[79]
Fricker P, Baumann M, Bauer F. How different lubricants affect the wear of steel counterfaces in radial lip sealing systems. Wear 477: 203897 (2021)
[80]
Grün J, Feldmeth S, Bauer F. Wear on radial lip seals: A numerical study of the influence on the sealing mechanism. Wear 476: 203674 (2021)
[81]
Borras F X, de Rooij M B, Schipper D J. Misalignment-induced macro-elastohydrodynamic lubrication in rotary lip seals. Tribol Int 151: 106479 (2020)
[82]
Xing F F, Hao R C, Ji J. Experimental research on ferrofluid combined rotary sealing of high power motor. J Phys Conf Ser 1861(1): 012089 (2021)
[83]
Yang X L, Sun P, Chen F, Hao F X, Li D C, Thomas P J. Numerical and experimental studies of a novel converging stepped ferrofluid seal. IEEE Trans Magn 55(3): 4600406 (2019)
[84]
Wang G H, Yang X L, Zhang R B. Study on axial parameters of stepped ferrofluid seals. In: Proceedings of the 5th International Conference on Mechanical Engineering and Automation Science, Wuhan, China, 2019: 012044.
[85]
Bouzid A H. A study on liquid leak rates in packing seals. Appl Sci 11(4): 1936 (2021)
[86]
Lee J J, Kang S Y, Kim T S, Byun S S. Thermo-economic analysis on the impact of improving inter-stage packing seals in a 500 MW class supercritical steam turbine power plant. Appl Therm Eng 121: 974–983 (2017)
[87]
Martsynkowskyy V, Kundera C, Gudkov S. Selected dynamic problems of the face packing seal. Procedia Eng 136: 150–156 (2016)
[88]
Fertman V E. Heat dissipation in high-speed magnetic fluid shaft seal. IEEE Trans Magn 16(2): 352–357 (1980)
[89]
Roth D A. Occlusion of intracranial aneurysms by ferromagnetic thrombi. J Appl Phys 40(3): 1044–1045 (1969)
[90]
Perry M P, Jones T B. Hydrostatic loading of magnetic liquid seals. IEEE Trans Magn 12(6): 798–800 (1976)
[91]
Polevikov V K. Stability of a static magnetic-fluid seal under the action of an external pressure drop. Fluid Dyn 32(3): 457–461 (1997)
[92]
Li X H, An H, Zhang P, Yu S H. Research on static sealing by ferric nitride magnetic fluid. Tribology 23(1): 69–71 (2003) (in Chinese)
[93]
Li X H, Liu Z F, An H, Zhang X L, Qi R. Preparation of nano-magnetic fluid using plasma technique and its application in static sealing. In: Proceedings of the 3rd International Symposium on Magnetic Industry, Shenyang, China, 2005: 149–150.
[94]
Chan C K, Chang C C, Yang I C, Shueh C, Kuan C K, Sheng A, Wu L H. A differential pumping system to temporarily seal a leaking, rotatable ConFlat flange. Vacuum 147: 72–77 (2018)
[95]
Nelson N R, Prasad N S. Sealing behavior of twin gasketed flange joints. Int J Press Vessels Pip 138: 45–50 (2016)
[96]
Wang J, Zhu J H, Hou J, Wang C, Zhang W H. Lightweight design of a bolt-flange sealing structure based on topology optimization. Struct Multidiscip Optim 62(6): 3413–3428 (2020)
[97]
He X Z, Li D C, Sun M L, Cui Z P, Hao R C. Experimental study of static sealing of large flanges with magnetic fluid. Chin J Vac Sci Technol 28(2): 179–181 (2008) (in Chinese)
[98]
Li D C, He X X, Zhang Z L. A study of static magnetic fluid seal of large flange diameter. In: Proceedings of the 11th International Conference on Magnetic Fluids, Kosice, Slovakia, 2008: 75–82.
[99]
Li D C, Yang W M. Experimental study of static sealing structure with large diameter and sealing gap using magnetic fluid. Acta Armamentarii 31(3): 355–359 (2010) (in Chinese)
[100]
Polevikov V, Tobiska L. Influence of diffusion of magnetic particles on stability of a static magnetic fluid seal under the action of external pressure drop. Commun Nonlinear Sci Numer Simul 16(10): 4021–4027 (2011)
[101]
Li D C, Zhang H N, Zhang Z L. Study on magnetic fluid static seal of large gap. In: Proceedings of the 7th China International Conference on High-Performance Ceramics (CICC 7), Xiamen, China, 2012: 1448–1454.
[102]
He X Z, Li D C, Zhang H N, Zhang Z L. Structure design of magnetic fluid static seal at large diameter flange. In: 7th China International Conference on High-Performance Ceramics (CICC 7), Xiamen, China, 2012: 1455–1458.
[103]
He X Z, Miao Y B, Wang L, Li D C. Latest development in sealing of liquid medium with magnetic fluid. Chin J Vac Sci Technol 39(5): 361–366 (2019) (in Chinese)
[104]
Hao D, Li D C, Chen J W, Yu J. Theoretical analysis and experimental study of the characteristics of magnetic fluid seal with a large diameter at high/low temperatures. Int J Appl Electrom 58(4): 531–550 (2018)
[105]
Parmar S, Ramani V, Upadhyay R V, Parekh K. Design and development of large radial clearance static and dynamic magnetic fluid seal. Vacuum 156: 325–333 (2018)
[106]
Radionov A, Podoltsev A, Peczkis G. The specific features of high-velocity magnetic fluid sealing complexes. Open Eng 8(1): 539–544 (2018)
[107]
Liu T G, Cheng Y S, Yang Z Y. Design optimization of seal structure for sealing liquid by magnetic fluids. J Magn Magn Mater 289: 411–414 (2005)
[108]
De Volder M, Reynaerts D. Development of a hybrid ferrofluid seal technology for miniature pneumatic and hydraulic actuators. Sens Actuat A Phys 152(2): 234–240 (2009)
[109]
Sreedhar B K, Kumar R N, Sharma P, Ruhela S, Philip J, Sundarraj S I, Chakraborty N, Mohana M, Sharma V, Padmakumar G, et al. Development of active magnetic bearings and ferrofluid seals toward oil free sodium pumps. Nucl Eng Des 265: 1166–1174 (2013)
[110]
Yang X L, Li D C. Experimental investigation of diverging stepped magnetic fluid seals with large sealing gap. Int J Appl Electromagn Mech 50(3): 407–415 (2016)
[111]
Wang H J, Li D C, He X Z, Li Z K. Performance of the ferrofluid seal with gas isolation device for sealing liquids. Int J Appl Electromagn Mech 57(1): 107–122 (2018)
[112]
Li X R, Li Z G, Zhu B S, Cheng J, Li W X, Yuan J Y. Optimal design of large gap magnetic fluid sealing device in a liquid environment. J Magn Magn Mater 540: 168472 (2021)
[113]
Taketomi S. Motion of ferrite particles under a high gradient magnetic field in a magnetic fluid shaft seal. Jpn J Appl Phys 19(10): 1929–1936 (1980)
[114]
Park G S, Kim D H, Hahn S Y, Lee K S. Numerical algorithm for analyzing the magnetic fluid seals. IEEE Trans Magn 30(5): 3351–3354 (1994)
[115]
Bonvouloir J. Experimental study of high speed sealing capability of single stage ferrofluidic seals. J Tribol 119(3): 416–421 (1997)
[116]
Kim Y S, Nakatsuka K, Fujita T, Atarashi T. Application of hydrophilic magnetic fluid to oil seal. J Magn Magn Mater 201(1–3): 361–363 (1999)
[117]
Sekine K, Mitamura Y, Murabayashi S, Nishimura I, Yozu R, Kim D W. Development of a magnetic fluid shaft seal for an axial-flow blood pump. Artif Organs 27(10): 892–896 (2003)
[118]
Zhao M, Zou J B, Hu J H. An analysis on the magnetic fluid seal capacity. J Magn Magn Mater 303(2): e428–e431 (2006)
[119]
Szydło Z, Matuszewski L. Experimental research on effectiveness of the magnetic fluid seals for rotary shafts working in water. Pol Marit Res 14(4): 53–58 (2007)
[120]
Krakov M S, Nikiforov I V. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics. Magnetohydrodynamics 44(4): 401–408 (2008)
[121]
Kim D Y, Bae H S, Park M K, Yu S C, Yun Y S, Cho C P, Yamane R. A study of magnetic fluid seals for underwater robotic vehicles. Int J Appl Electromagn Mech 33(1–2): 857–863 (2010)
[122]
Ravaud R, Lemarquand G, Lemarquand V. Mechanical properties of ferrofluid applications: Centering effect and capacity of a seal. Tribol Int 43(1–2): 76–82 (2010)
[123]
Pinho M, Génevaux J M, Dauchez N, Brouard B, Collas P, Mézière H. Damping induced by ferrofluid seals in ironless loudspeaker. J Magn Magn Mater 356: 125–130 (2014)
[124]
Matuszewski L. Multi-stage magnetic-fluid seals for operating in water–life test procedure, test stand and research results. Part I Life test procedure, test stand and instrumentation Pol Marit Res 19(4): 62–70 (2012)
[125]
Matuszewski L. Multi-stage magnetic-fluid seals for operating in water–life test procedure, test stand and research results. Part II Results of life tests of multi-stage magnetic-fluid seal operating in water Pol Marit Res 20(1): 39–47 (2013)
[126]
Schinteie G, Palade P, Vekas L, Iacob N, Bartha C, Kuneser V. Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications. J Phys D 46(39): 395501 (2013)
[127]
Cai Y Q, Xing N. The analysis on the starting friction torque increase of magnetic fluid revolving sealing. Appl Mech Mater 275–277: 429–432 (2013)
[128]
Liu J. Numerical analysis of secondary flow in the narrow gap of magnetic fluid shaft seal using a spectral finite difference method. Tribol Trans 59(2): 309–315 (2016)
[129]
Tomioka J, Miyanaga N. Blood sealing properties of magnetic fluid seals. Tribol Int 113: 338–343 (2017)
[130]
Li Z K, Li D C, Chen Y B, Yang Y L, Yao J. Influence of viscosity and magnetoviscous effect on the performance of a magnetic fluid seal in a water environment. Tribol Trans 61(2): 367–375 (2018)
[131]
Hu Z D, Dai Q W, Huang W, Wang X L. Liquid–gas support and lubrication based on a ferrofluid seal. J Phys D Appl Phys 53(2): 025002 (2020)
[132]
Van der Wal K, van Ostayen R A J, Lampaert S G E. Ferrofluid rotary seal with replenishment system for sealing liquids. Tribol Int 150: 106372 (2020)
[133]
Yang X L, Guan Y, Li Y, Li D C. Experimental study of converging ferrofluid seal with small clearance and double magnetic sources. Tribol Trans 64(6): 1046–1054 (2021)
[134]
Cheng Y H, Li D C, Li Z K. Influence of rheological properties on the starting torque of magnetic fluid seal. IEEE Trans Magn 57(3): 4600308 (2021)
[135]
Goldowsky M. New methods for sealing, filtering and lubricating with magnetic fluids. IEEE Trans Magn 16(2): 382–386 (1980)
[136]
Miyake S, Takahashi S. Characteristics of a ferromagnetic linear vacuum seal. ASLE Trans 28(3): 358–363 (1985)
[137]
Evsin S I, Sokolov N A, Stradomsky Y I, Charkovsky V B. Development of magnetic fluid reciprocating motion seals. J Magn Magn Mater 85(1–3): 253–256 (1990)
[138]
Li D C, Hong J P, Yang Q X, Wang X T. Motion state analysis and seal ability study on the magnetic fluid seal of reciprocating shaft. Chin J Aeronaut 15(2): 115–120 (2002)
[139]
Li D C, Lan H Q, Bai X X, Wang Z S. Study on flowing state of magnetic fluid in seal gap of reciprocating shaft. J Beijing Univ Aeronaut Astronaut 29(2): 185–188 (2003) (in Chinese)
[140]
Li D C, Xu H P, He X Z, Lan H Q. Mechanism of magnetic liquid flowing in the magnetic liquid seal gap of reciprocating shaft. J Magn Magn Mater 289: 407–410 (2005)
[141]
Li D C, Xu H P, He X Z, Lan H Q. Theoretical and experimental study on the magnetic fluid seal of reciprocating shaft. J Magn Magn Mater 289: 399–402 (2005)
[142]
Ochoński W. Vakuum-lineardurchführungen mit magnetflüssigkeitsdichtungen. Vak Forsch Prax 20(1): 22–27 (2008) (in German)
[143]
Mizutani Y, Sawano H, Yoshioka H, Shinno H. Magnetic fluid seal for linear motion system with gravity compensator. In: Proceedings of the 9th CIRP International Conference on Intelligent Computation in Manufacturing Engineering, Capri, Italy, 2015: 581–586.
[144]
Chen Y B, Li D C, Zhang Y J, He C Y. Numerical analysis and experimental study on magnetic fluid reciprocating seals. IEEE Trans Magn 55(1): 4600106 (2019)
[145]
Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. J Magn Magn Mater 149(1–2): 174–180 (1995)
[146]
Finsterle S, Cooper C, Muller R A, Grimsich J, Apps J. Sealing of a deep horizontal borehole repository for nuclear waste. Energies 14(1): 91 (2021)
[147]
Ritter J J. Modular magnetically coupled high-speed stirrer for hermetically sealed chemical reactors. Rev Sci Instrum 59(2): 374–376 (1988)
[148]
Zhou S Y, Wang B X, Wu D J, Ma G Y, Yang G, Wei W Y. Follow-up ultrasonic vibration assisted laser welding dissimilar metals for nuclear reactor pump can end sealing. Nucl Mater Energy 27: 100975 (2021)
[149]
Kochurin E A, Zubarev N M. Chaotic dynamics of the interface between dielectric liquids at the regime of stabilized Kelvin–Helmholtz instability by a tangential electric field. Fluids 6(3): 125 (2021)
[150]
Budiana E P, Pranowo, Indarto, Deendarlianto. The meshless numerical simulation of Kelvin–Helmholtz instability during the wave growth of liquid–liquid slug flow. Comput Math Appl 80(7): 1810–1838 (2020)
[151]
Liu G, Wang Y S, Zang G J, Zhao H T. Viscous Kelvin–Helmholtz instability analysis of liquid-vapor two-phase stratified flow for condensation in horizontal tubes. Int J Heat Mass Transf 84: 592–599 (2015)
[152]
Trujillo-Rodríguez M J, Anderson J L. In situ generation of hydrophobic magnetic ionic liquids in stir bar dispersive liquid–liquid microextraction coupled with headspace gas chromatography. Talanta 196: 420–428 (2019)
[153]
Trujillo-Rodríguez M J, Anderson J L. In situ formation of hydrophobic magnetic ionic liquids for dispersive liquid–liquid microextraction. J Chromatogr A 1588: 8–16 (2019)
[154]
Davudabadi Farahani M, Shemirani F. Supported hydrophobic ionic liquid on magnetic nanoparticles as a new sorbent for separation and preconcentration of lead and cadmium in milk and water samples. Microchim Acta 179(3–4): 219–226 (2012)
[155]
Matuszewski L, Szydło Z. The application of magnetic fluids in sealing nodes designed for operation in difficult conditions and in machines used in sea environment. Pol Marit Res 15(3): 49–58 (2008)
[156]
Mitamura Y, Takahashi S, Kano K, Okamoto E, Murabayashi S, Nishimura I, Higuchi T A. Sealing performance of a magnetic fluid seal for rotary blood pumps. Artif Organs 33(9): 770–773 (2009)
[157]
Chen Y, Li D C. (2011) Design and experiments for magnetic fluid seal of tank panoramic mirror. Acta Armamentarii 32(11): 1428–1432 (2011) (in Chinese)
[158]
Li J, Xue K M, Sun G Z, Cao A M. Precise extrusion process of waveguide component for radar use. J Plast Eng 20(4): 1–5 (2013) (in Chinese)
[159]
Fu D B, Jiang Y. Dynamics simulation of guided missile launcher based on coupled rigid and flexible model. J Syst Simul 21(6): 1789–1791, 1796 (2009) (in Chinese)
[160]
Cong M, Wen H Y, Du Y, Dai P L. Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot. Chin J Mech Eng 25(4): 706–714 (2012)
[161]
Sekiguchi H, Iwasaki T, Harima T. Development of clean room robot with four revolute joints using parallelogram arm mechanism. J Jpn Soc Precis Eng 56(4): 655–660 (1990) (in Japanese)
[162]
Mizumoto M, Inoue H. Development of a magnetic liquid seal for clean robots. J Magn Magn Mater 65(2–3): 385–388 (1987)
[163]
Raj K, Chorney A F. Ferrofluid technology—An overview. Indian J Eng Mater Sci 5(6): 372–389 (1998)
[164]
Wang Y F, Yin K Y, Yuan Y X, Chen J. Current-limiting soft starting method for a high-voltage and high-power motor. Energies 12(16): 3068 (2019)
[165]
Yu H G, Tao J F, Qin C J, Liu M Y, Xiao D Y, Sun H, Liu C L. A novel constrained dense convolutional autoencoder and DNN-based semi-supervised method for shield machine tunnel geological formation recognition. Mech Syst Signal Process 165: 108353 (2022)
[166]
Hellum V, Lassen T, Spagnoli A. Crack growth models for multiaxial fatigue in a ship’s propeller shaft. Eng Fail Anal 127: 105470 (2021)
[167]
Jiang J B, Zhao W J, Peng X D, Li J Y. A novel design for discrete surface texture on gas face seals based on a superposed groove model. Tribol Int 147: 106269 (2020)
[168]
Shuster M, Seasons R, Burke D. Laboratory simulation to select oil seal and surface treatment. Wear 225–229: 954–961 (1999)
[169]
Manukyan S, Schneider M. Experimental investigation of wetting with magnetic fluids. Langmuir 32(20): 5135–5140 (2016)
[170]
Edalatpour M, Sommers A D, Eid K F. Variations of the static contact angle of ferrofluid droplets on solid horizontal surfaces in external uniform magnetic fields. Langmuir 36(22): 6314–6322 (2020)
[171]
El-Kabeir S, Rashad A, Khan W, Abdelrahman Z M. Micropolar ferrofluid flow via natural convective about a radiative isoflux sphere. Adv Mech Eng 13(2): 1687814021994392 (2021)
[172]
Dutz S, Buske N, Landers J, Gräfe C, Wende H, Clement J H. Biocompatible magnetic fluids of co-doped iron oxide nanoparticles with tunable magnetic properties. Nanomaterials 10(6): 1019 (2020)
[173]
Patade S R, Andhare D D, Somvanshi S B, Jadhav S A, Khedkar M V, Jadhav K M. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram Int 46(16): 25576–25583 (2020)