18
Views
0
Downloads
0
Crossref
0
WoS
0
Scopus
0
CSCD
Superlubricity and active friction control have been extensively researched in order to reduce the consumption of fossil energy, the failure of moving parts, and the waste of materials. The vibration-induced superlubricity (VIS) presents a promising solution for friction reduction since it does not require high-standard environment. However, the mechanism underlying the VIS remains unclear since the atomic-scale information in a buried interface is unavailable to experimental methods. In this paper, the mechanism of VIS was examined via numerical calculation based on the Prandtl–Tomlinson (PT) model and molecular dynamics (MD) simulations. The results revealed that the pushing effect of stick–slip is one of the direct sources of friction reduction ability under vibrational excitation, which was affected by the response amplitude, frequency, and the trace of the tip. Moreover, the proportion of this pushing effect could be modulated by changing the phase difference when applying coupled vibrational excitation in x- and z-axis. This results in a significant change in friction reduction ability with phase. By this way, active friction control from the stick–slip to superlubricity can be achieved conveniently.
Superlubricity and active friction control have been extensively researched in order to reduce the consumption of fossil energy, the failure of moving parts, and the waste of materials. The vibration-induced superlubricity (VIS) presents a promising solution for friction reduction since it does not require high-standard environment. However, the mechanism underlying the VIS remains unclear since the atomic-scale information in a buried interface is unavailable to experimental methods. In this paper, the mechanism of VIS was examined via numerical calculation based on the Prandtl–Tomlinson (PT) model and molecular dynamics (MD) simulations. The results revealed that the pushing effect of stick–slip is one of the direct sources of friction reduction ability under vibrational excitation, which was affected by the response amplitude, frequency, and the trace of the tip. Moreover, the proportion of this pushing effect could be modulated by changing the phase difference when applying coupled vibrational excitation in x- and z-axis. This results in a significant change in friction reduction ability with phase. By this way, active friction control from the stick–slip to superlubricity can be achieved conveniently.
This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 52175175 and 51527901).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.