Journal Home > Volume 11 , Issue 6

About 30% of the world’s primary energy consumption is in friction. The economic losses caused by friction energy dissipation and wear account for about 2%–7% of its gross domestic product (GDP) for different countries every year. The key to reducing energy consumption is to control the way of energy dissipation in the friction process. However, due to many various factors affecting friction and the lack of efficient detection methods, the energy dissipation mechanism in friction is still a challenging problem. Here, we firstly introduce the classical microscopic mechanism of friction energy dissipation, including phonon dissipation, electron dissipation, and non-contact friction energy dissipation. Then, we attempt to summarize the ultrafast friction energy dissipation and introduce the high-resolution friction energy dissipation detection system, since the origin of friction energy dissipation is essentially related to the ultrafast dynamics of excited electrons and phonons. Finally, the application of friction energy dissipation in representative high-end equipment is discussed, and the potential economic saving is predicted.


menu
Abstract
Full text
Outline
About this article

The mechanisms and applications of friction energy dissipation

Show Author's information Huan LIU1Boming YANG2Chong WANG1Yishu HAN1Dameng LIU1( )
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana 61801, USA

Abstract

About 30% of the world’s primary energy consumption is in friction. The economic losses caused by friction energy dissipation and wear account for about 2%–7% of its gross domestic product (GDP) for different countries every year. The key to reducing energy consumption is to control the way of energy dissipation in the friction process. However, due to many various factors affecting friction and the lack of efficient detection methods, the energy dissipation mechanism in friction is still a challenging problem. Here, we firstly introduce the classical microscopic mechanism of friction energy dissipation, including phonon dissipation, electron dissipation, and non-contact friction energy dissipation. Then, we attempt to summarize the ultrafast friction energy dissipation and introduce the high-resolution friction energy dissipation detection system, since the origin of friction energy dissipation is essentially related to the ultrafast dynamics of excited electrons and phonons. Finally, the application of friction energy dissipation in representative high-end equipment is discussed, and the potential economic saving is predicted.

Keywords: friction energy dissipation, ultrafast dynamics, origin of friction, superlubricity.

References(174)

[1]
Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020)
[2]
Ma L R, Luo J B. Thin film lubrication in the past 20 years. Friction 4(4): 280–302 (2016)
[3]
Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol Int 47: 221–234 (2012)
[4]
Cowen R. The wheels come off Kepler. Nature 497(7450): 417–418 (2013)
[5]
Dašić P, Franek F, Assenova E, Radovanović M. International standardization and organizations in the field of tribology. Ind Lubr Tribol 55(6): 287–291 (2003)
[6]
Luo J B. Investigation on the origin of friction and superlubricity. Chin Sci Bull 65(27): 2966–2978 (2020) (in Chinese)
[7]
Liu S W, Wang H P, Xu Q, Ma T B, Yu G, Zhang C H, Geng D C, Yu Z W, Zhang S G, Wang W Z, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8: 14029 (2017)
[8]
Zhang R F, Ning Z Y, Zhang Y Y, Zheng Q S, Chen Q, Xie H H, Zhang Q, Qian W Z, Wei F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 8(12): 912–916 (2013)
[9]
Hod O, Meyer E, Zheng Q S, Urbakh M. Structural superlubricity and ultralow friction across the length scales. Nature 563(7732): 485–492 (2018)
[10]
Berman D, Erdemir A, Sumant A V. Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12(3): 2122–2137 (2018)
[11]
Luo J B, Liu M, Ma L R. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021)
[12]
Liao M Z, Nicolini P, Du L J, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat Mater 21(1): 47–53 (2022)
[13]
Luo J B, Zhou X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 8(4): 643–665 (2020)
[14]
Shi S, Guo D, Luo J B. Micro/atomic-scale vibration induced superlubricity. Friction 9(5): 1163–1174 (2021)
[15]
Wang H D, Liu Y H. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 8(6): 1007–1024 (2020)
[16]
Wang X D, Sato H, Adachi K. Low friction in self-mated silicon carbide tribosystem using nanodiamond as lubricating additive in water. Friction 9(3): 598–611 (2021)
[17]
Zhang S, Ma T B, Erdemir A, Li Q Y. Tribology of two-dimensional materials: From mechanisms to modulating strategies. Mater Today 26: 67–86 (2019)
[18]
Shinjo K, Hirano M. Dynamics of friction: Superlubric state. Surf Sci 283(1–3): 473–478 (1993)
[19]
Yang J R, Liu Z, Grey F, Xu Z P, Li X D, Liu Y L, Urbakh M, Cheng Y, Zheng Q S. Observation of high-speed microscale superlubricity in graphite. Phys Rev Lett 110(25): 255504 (2013)
[20]
Liu Z, Yang J R, Grey F, Liu J Z, Liu Y L, Wang Y B, Yang Y L, Cheng Y, Zheng Q S. Observation of microscale superlubricity in graphite. Phys Rev Lett 108(20): 205503 (2012)
[21]
Bowden F P, Tabor D. The Friction and Lubrication of Solids. Oxford (UK): Oxford University Press, 1950.
[22]
Gnecco E, Bennewitz R, Socoliuc A, Meyer E. Friction and wear on the atomic scale. Wear 254(9): 859–862 (2003)
[23]
Kontorova T, Frenkel J. On the theory of plastic deformation and twinning. II. Zh Eksp Teor Fiz 8: 1340–1348 (1938)
[24]
Weiss M, Elmer F J. Dry friction in the Frenkel–Kontorova–Tomlinson model: Static properties. Phys Rev B 53(11): 7539–7549 (1996)
[25]
Hu Y Z, Ma T B, Wang H. Energy dissipation in atomic-scale friction. Friction 1(1): 24–40 (2013)
[26]
Novko D, Blanco-Rey M, Juaristi J I, Alducin M. Ab initio molecular dynamics with simultaneous electron and phonon excitations: Application to the relaxation of hot atoms and molecules on metal surfaces. Phys Rev B 92(20): 201411 (2015)
[27]
Cammarata A. Phonon–phonon scattering selection rules and control: An application to nanofriction and thermal transport. RSC Adv 9(64): 37491–37496 (2019)
[28]
Cammarata A, Polcar T. Control of energy dissipation in sliding low-dimensional materials. Phys Rev B 102(8): 085409 (2020)
[29]
Hu R F, Krylov S Y, Frenken J W M. On the origin of frictional energy dissipation. Tribol Lett 68(1): 8 (2020)
[30]
Cammarata A, Nicolini P, Simonovic K, Ukraintsev E, Polcar T. Atomic-scale design of friction and energy dissipation. Phys Rev B 99(9): 094309 (2019)
[31]
Wang H, Hu Y Z, Zhang T. Simulations on atomic-scale friction between self-assembled monolayers: Phononic energy dissipation. Tribol Int 40(4): 680–686 (2007)
[32]
Xu L, Ma T B, Hu Y Z, Wang H. Vanishing stick–slip friction in few-layer graphenes: The thickness effect. Nanotechnology 22(28): 285708 (2011)
[33]
Weiss M, Elmer F J. Dry friction in the Frenkel–Kontorova–Tomlinson model: Dynamical properties. Zeitschrift Für Physik B Condens Matter 104(1): 55–69 (1997)
[34]
Chen Y F, Yang J K, Wang X H, Ni Z H, Li D Y. Temperature dependence of frictional force in carbon nanotube oscillators. Nanotechnology 20(3): 035704 (2009)
[35]
Vink R L C. Connection between sliding friction and phonon lifetimes: Thermostat-induced thermolubricity effects in molecular dynamics simulations. Phys Rev B 100(9): 094305 (2019)
[36]
Liu X Z, Ye Z J, Dong Y L, Egberts P, Carpick R W, Martini A. Dynamics of atomic stick–slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys Rev Lett 114(14): 146102 (2015)
[37]
Kawai S, Benassi A, Gnecco E, Söde H, Pawlak R, Feng X L, Müllen K, Passerone D, Pignedoli C A, Ruffieux P, et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351(6276): 957–961 (2016)
[38]
Schirmeisen A, Jansen L, Fuchs H. Tip-jump statistics of stick–slip friction. Phys Rev B 71(24): 245403 (2005)
[39]
Kisiel M, Gnecco E, Gysin U, Marot L, Rast S, Meyer E. Suppression of electronic friction on Nb films in the superconducting state. Nat Mater 10(2): 119–122 (2011)
[40]
Skuratovsky S, Agmon L, Berkovich R. Comparative study of dimensionality and symmetry breaking on nanoscale friction in the Prandtl–Tomlinson model with varying effective stiffness. Tribol Lett 68(4): 113 (2020)
[41]
Tan X F, Guo D, Luo J B. Dynamic friction energy dissipation and enhanced contrast in high frequency bimodal atomic force microscopy. Friction 10(5): 748–761 (2022)
[42]
Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R. Friction and dissipation in epitaxial graphene films. Phys Rev Lett 102(8): 086102 (2009)
[43]
Duan Z Q, Wei Z Y, Huang S Y, Wang Y K, Sun C D, Tao Y, Dong Y, Yang J K, Zhang Y, Kan Y J, et al. Resonance in atomic-scale sliding friction. Nano Lett 21(11): 4615–4621 (2021)
[44]
Hertl N, Martin-Barrios R, Galparsoro O, Larrégaray P, Auerbach D J, Schwarzer D, Wodtke A M, Kandratsenka A. Random force in molecular dynamics with electronic friction. J Phys Chem C 125(26): 14468–14473 (2021)
[45]
Box C L, Zhang Y L, Yin R R, Jiang B, Maurer R J. Determining the effect of hot electron dissipation on molecular scattering experiments at metal surfaces. JACS Au 1(2): 164–173 (2021)
[46]
Narozhny B N, Levchenko A. Coulomb drag. Rev Mod Phys 88(2): 025003 (2016)
[47]
Dou W J, Subotnik J E. Perspective: How to understand electronic friction. J Chem Phys 148(23): 230901 (2018)
[48]
Lee K, Xue J M, Dillen D C, Watanabe K, Taniguchi T, Tutuc E. Giant frictional drag in double bilayer graphene heterostructures. Phys Rev Lett 117(4): 046803 (2016)
[49]
Volokitin A I, Persson B. Casimir force and frictional drag between graphene sheets. In: Fundamentals of Friction and Wear on the Nanoscale. Gnecco E, Meyer E, Eds. Cham (Switzerland): Springer Cham, 2015: 591–608.
DOI
[50]
Persson B N J, Zhang Z Y. Theory of friction: Coulomb drag between two closely spaced solids. Phys Rev B 57(12): 7327–7334 (1998)
[51]
Ishida H. Semiclassical derivation of the surface-resistivity formula. Phys Rev B 60(7): 4532–4534 (1999)
[52]
Landauro C V, Janssen T. Study of the conductivity of thin quasicrystalline films and its relation with the electronic friction. Phys B Condens Matter 348(1–4): 459–464 (2004)
[53]
Gnecco E, Bennewitz R, Gyalog T, Meyer E. Friction experiments on the nanometre scale. J Phys Condens Matter 13(31): R619–R642 (2001)
[54]
Dumas P, Hein M, Otto A, Persson B N J, Rudolf P, Raval R, Williams G P. Friction of molecules at metallic surfaces: Experimental approach using synchrotron infrared spectroscopy. Surf Sci 433–435: 797–805 (1999)
[55]
Persson B N J, Tosatti E, Fuhrmann D, Witte G, Wöll C. Low-frequency adsorbate vibrational relaxation and sliding friction. Phys Rev B 59(18): 11777–11791 (1999)
[56]
Persson B N J, Schumacher D, Otto A. Surface resistivity and vibrational damping in adsorbed layers. Chem Phys Lett 178(2–3): 204–212 (1991)
[57]
Dou W J, Subotnik J E. Perspective: How to understand electronic friction. J Chem Phys 148(23): 230901 (2018)
[58]
Witte G, Weiss K, Jakob P, Braun J, Kostov K L, Wöll C. Damping of molecular motion on a solid substrate: Evidence for electron–hole pair creation. Phys Rev Lett 80(1): 121–124 (1998)
[59]
Highland M, Krim J. Superconductivity dependent friction of water, nitrogen, and superheated He films adsorbed on Pb(111). Phys Rev Lett 96(22): 226107 (2006)
[60]
Kim J H, Fu D Y, Kwon S, Liu K, Wu J Q, Park J Y. Crossing thermal lubricity and electronic effects in friction: Vanadium dioxide under the metal–insulator transition. Adv Mater Interfaces 3(2): 1500388 (2016)
[61]
Park J Y, Qi Y B, Ogletree D F, Thiel P A, Salmeron M. Influence of carrier density on the friction properties of silicon pn junctions. Phys Rev B 76(6): 064108 (2007)
[62]
Park J Y, Ogletree D F, Thiel P A, Salmeron M. Electronic control of friction in silicon pn junctions. Science 313(5784): 186 (2006)
[63]
He F, Yang X, Bian Z L, Xie G X, Guo D, Luo J B. In-plane potential gradient induces low frictional energy dissipation during the stick–slip sliding on the surfaces of 2D materials. Small 15(49): 1904613 (2019)
[64]
Fang L, Liu D M, Shi J, Pang H, Luo J B, Wen S Z. Electrical friction modulation on MoS2 using electron beam radiation without electrostatic interactions. Nanotechnology 31(7): 075703 (2020)
[65]
Kuehn S, Loring R F, Marohn J A. Dielectric fluctuations and the origins of noncontact friction. Phys Rev Lett 96(15): 156103 (2006)
[66]
Wang J J, Li J M, Li C, Cai X L, Zhu W G, Jia Y. Tuning the nanofriction between two graphene layers by external electric fields: A density functional theory study. Tribol Lett 61(1): 4 (2015)
[67]
Wang C Q, Chen W G, Zhang Y S, Sun Q, Jia Y. Effects of vdW interaction and electric field on friction in MoS2. Tribol Lett 59(1): 7 (2015)
[68]
Wang L F, Zhou X, Ma T B, Liu D M, Gao L, Li X, Zhang J, Hu Y Z, Wang H, Dai Y D, et al. Superlubricity of a graphene/MoS2 heterostructure: A combined experimental and DFT study. Nanoscale 9(30): 10846–10853 (2017)
[69]
Gerrits N, Juaristi J I, Meyer J. Electronic friction coefficients from the atom-in-jellium model for Z = 1–92. Phys Rev B 102(15): 155130 (2020)
[70]
Belviso F, Cammarata A, Missaoui J, Polcar T. Effect of electric fields in low-dimensional materials: Nanofrictional response as a case study. Phys Rev B 102(15): 155433 (2020)
[71]
Spiering P, Shakouri K, Behler J, Kroes G J, Meyer J. Orbital-dependent electronic friction significantly affects the description of reactive scattering of N2 from Ru(0001). J Phys Chem Lett 10(11): 2957–2962 (2019)
[72]
Dou W J, Subotnik J E. Universality of electronic friction: Equivalence of von Oppen’s nonequilibrium Green’s function approach and the Head–Gordon–Tully model at equilibrium. Phys Rev B 96(10): 104305 (2017)
[73]
Dou W J, Miao G H, Subotnik J E. Born–Oppenheimer dynamics, electronic friction, and the inclusion of electron–electron interactions. Phys Rev Lett 119(4): 046001 (2017)
[74]
Maurer R J, Askerka M, Batista V S, Tully J C. Ab initio tensorial electronic friction for molecules on metal surfaces: Nonadiabatic vibrational relaxation. Phys Rev B 94(11): 115432 (2016)
[75]
Luo X, Jiang B, Juaristi J I, Alducin M, Guo H. Electron–hole pair effects in methane dissociative chemisorption on Ni(111). J Chem Phys 145(4): 044704 (2016)
[76]
Askerka M, Maurer R J, Batista V S, Tully J C. Role of tensorial electronic friction in energy transfer at metal surfaces Phys Rev Lett 116(21): 217601 (2016)
[77]
Rittmeyer S P, Meyer J, Juaristi J I, Reuter K. Electronic friction-based vibrational lifetimes of molecular adsorbates: Beyond the independent-atom approximation. Phys Rev Lett 115(4): 046102 (2015)
[78]
Krim J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv Phys 61(3): 155–323 (2012)
[79]
Liu D M, Luo J B. Chapter 9—Energy dissipation through phonon and electron behaviors of superlubricity in 2D materials. In: Superlubricity, 2nd edn. Erdemir A, Martin JM, Luo J B Eds. Amsterdam (the Netherlands): Elsevier B.V., 2020: 145–166.
DOI
[80]
Park J Y, Salmeron M. Fundamental aspects of energy dissipation in friction. Chem Rev 114(1): 677–711 (2014)
[81]
Pendry J B. Shearing the vacuum—Quantum friction. J Phys Condens Matter 9(47): 10301–10320 (1997)
[82]
Volokitin A I, Persson B N J. Noncontact friction between nanostructures. Phys Rev B 68(15): 155420 (2003)
[83]
Casimir H B G, Polder D. Influence of retardation on the London–van der Waals forces. Phys Rev 73(4): 360–372 (1948)
[84]
Boyer T H. Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys Rev 174(5): 1764–1776 (1968)
[85]
Volokitin A I, Persson B N J. Resonant photon tunneling enhancement of the van der Waals friction. Phys Rev Lett 91(10): 106101 (2003)
[86]
Volokitin A I. Casimir frictional drag force between a SiO2 tip and a graphene-covered SiO2 substrate. Phys Rev B 94(23): 235450 (2016)
[87]
Volokitin A, Persson B N. Electromagnetic Fluctuations at the Nanoscale: Theory and Applications. Berlin and Heldelberg (Germany): Springer Berlin Heidelberg, 2017.
DOI
[88]
Yildiz D, Kisiel M, Gysin U, Gürlü O, Meyer E. Mechanical dissipation via image potential states on a topological insulator surface. Nat Mater 18(11): 1201–1206 (2019)
[89]
Samadashvili M. Non-contact friction studied with pendulum AFM. Ph.D. Thesis. Basel (Switzerland): University of Basel, 2014.
[90]
Wang H N, Zhang C J, Rana F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett 15(1): 339–345 (2015)
[91]
Chi Z, Chen H H, Chen Z, Zhao Q, Chen H L, Weng Y X. Ultrafast energy dissipation via coupling with internal and external phonons in two-dimensional MoS2. ACS Nano 12(9): 8961–8969 (2018)
[92]
Grubišić Čabo A, Miwa J A, Grønborg S S, Riley J M, Johannsen J C, Cacho C, Alexander O, Chapman R T, Springate E, Grioni M, et al. Observation of ultrafast free carrier dynamics in single layer MoS2. Nano Lett 15(9): 5883–5887 (2015)
[93]
Sun D Z, Rao Y, Reider G A, Chen G G, You Y M, Brézin L, Harutyunyan A R, Heinz T F. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett 14(10): 5625–5629 (2014)
[94]
Blanco-Rey M, Juaristi J I, Díez Muiño R, Busnengo H F, Kroes G J, Alducin M. Electronic friction dominates hydrogen hot-atom relaxation on Pd(100). Phys Rev Lett 112(10): 103203 (2014)
[95]
Wei Z Y, Kan Y J, Zhang Y, Chen Y F. The frictional energy dissipation and interfacial heat conduction in the sliding interface. AIP Adv 8(11): 115321 (2018)
[96]
Ishikawa M, Wada N, Miyakawa T, Matsukawa H, Suzuki M, Sasaki N, Miura K. Experimental observation of phonon generation and propagation at a MoS2(0001) surface in the friction process. Phys Rev B 93(20): 201401 (2016)
[97]
Maity I, Naik M H, Maiti P K, Krishnamurthy H R, Jain M. Phonons in twisted transition-metal dichalcogenide bilayers: Ultrasoft phasons and a transition from a superlubric to a pinned phase. Phys Rev Research 2: 013335 (2020)
[98]
Quan J M, Linhart L, Lin M L, Lee D, Zhu J H, Wang C Y, Hsu W T, Choi J, Embley J, Young C, et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat Mater 20(8): 1100–1105 (2021)
[99]
Jin C H, Kim J, Suh J, Shi Z W, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T, Tongay S, et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nature Phys 13(2): 127–131 (2017)
[100]
Sun L Y, Kumar P, Liu Z Y, Choi J, Fang B, Roesch S, Tran K, Casara J, Priego E, Chang Y M, et al. Phonon dephasing dynamics in MoS2. Nano Lett 21(3): 1434–1439 (2021)
[101]
Miller B, Lindlau J, Bommert M, Neumann A, Yamaguchi H, Holleitner A, Högele A, Wurstbauer U. Tuning the fröhlich exciton–phonon scattering in monolayer MoS2. Nat Commun 10: 807 (2019)
[102]
Ding L Y, Gong Z L, Huang P. Energy dissipation mechanism of phononic friction. Acta Physica Sinica 58(12): 8522–8528 (2009) (in Chinese)
[103]
Wei Z Y, Duan Z Q, Kan Y J, Zhang Y, Chen Y F. Phonon energy dissipation in friction between graphene/graphene interface. J Appl Phys 127(1): 015105 (2020)
[104]
Sakong S, Kratzer P, Han X, Balgar T, Hasselbrink E. Isotope effects in the vibrational lifetime of hydrogen on germanium(100): Theory and experiment. J Chem Phys 131(12): 124502 (2009)
[105]
Jin Z X, Subotnik J E. Nonadiabatic dynamics at metal surfaces: Fewest switches surface hopping with electronic relaxation. J Chem Theory Comput 17(2): 614–626 (2021)
[106]
Yadav D, Trushin M, Pauly F. Thermalization of photoexcited carriers in two-dimensional transition metal dichalcogenides and internal quantum efficiency of van der Waals heterostructures. Phys Rev Research 2: 043051 (2020).
[107]
Cunningham P D, McCreary K M, Jonker B T. Auger recombination in chemical vapor deposition-grown monolayer WS2. J Phys Chem Lett 7(24): 5242–5246
[108]
Smoleński T, Dolgirev P E, Kuhlenkamp C, Popert A, Shimazaki Y, Back P, Lu X B, Kroner M, Watanabe K, Taniguchi T, et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595(7865): 53–57 (2021)
[109]
Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587(7833): 214–218 (2020)
[110]
Sohier T, Ponomarev E, Gibertini M, Berger H, Marzari N, Ubrig N, Morpurgo A F. Enhanced electron–phonon interaction in multivalley materials. Phys Rev X 9(3): 031019 (2019)
[111]
Bradac C, Xu Z Q, Aharonovich I. Quantum energy and charge transfer at two-dimensional interfaces. Nano Lett 21(3): 1193–1204 (2021)
[112]
Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan P M, et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat Commun 7: 12512 (2016)
[113]
Dostál J, Fennel F, Koch F, Herbst S, Würthner F, Brixner T. Direct observation of exciton–exciton interactions. Nat Commun 9: 2466 (2018)
[114]
Pareek V, Madéo J, Dani K M. Ultrafast control of the dimensionality of exciton–exciton annihilation in atomically thin black phosphorus. Phys Rev Lett 124(5): 057403 (2020)
[115]
Jauregui L A, Joe A Y, Pistunova K, Wild D S, High A A, Zhou Y, Scuri G, de Greve K, Sushko A, Yu C H, et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366(6467): 870–875 (2019)
[116]
Zhang Y L, Maurer R J, Jiang B. Symmetry-adapted high dimensional neural network representation of electronic friction tensor of adsorbates on metals. J Phys Chem C 124(1): 186–195 (2020)
[117]
Gongyang Y J, Ouyang W G, Qu C Y, Urbakh M, Quan B G, Ma M, Zheng Q S. Temperature and velocity dependent friction of a microscale graphite–DLC heterostructure. Friction 8(2): 462–470 (2020)
[118]
Gao M, Li H Y, Ma L R, Gao Y, Ma L W, Luo J B. Molecular behaviors in thin film lubrication—Part two: Direct observation of the molecular orientation near the solid surface. Friction 7(5): 479–488 (2019)
[119]
Moritomo Y, Yonezawa K, Yasuda T. Carrier formation dynamics in prototypical organic solar cells as investigated by transint absorption spectroscopy. Int J Photoenergy 2016: 9105460 (2016)
[120]
Massaro E S, Hill A H, Kennedy C L, Grumstrup E M. Imaging theory of structured pump-probe microscopy. Opt Express 24(18): 20868–20880 (2016)
[121]
Davydova D, de la Cadena A, Akimov D, Dietzek B. Transient absorption microscopy: Advances in chemical imaging of photoinduced dynamics. Laser Photonics Rev 10(1): 62–81 (2016)
[122]
Devadas M S, Devkota T, Johns P, Li Z M, Lo S S, Yu K, Huang L B, Hartland G V. Imaging nano-objects by linear and nonlinear optical absorption microscopies. Nanotechnology 26(35): 354001 (2015)
[123]
Grumstrup E M, Gabriel M M, Cating E E M, van Goethem E M, Papanikolas J M. Pump-probe microscopy: Visualization and spectroscopy of ultrafast dynamics at the nanoscale. Chem Phys 458: 30–40 (2015)
[124]
Liu H, Wang T, Wang C, Liu D M, Luo J B. Exciton radiative recombination dynamics and nonradiative energy transfer in two-dimensional transition-metal dichalcogenides. J Phys Chem C 123(15): 10087–10093 (2019)
[125]
Liu H, Wang C, Wang T, Hu X M, Liu D M, Luo J B. Controllable interlayer charge and energy transfer in perovskite quantum dots/transition metal dichalcogenide heterostructures. Adv Mater Interfaces 6(23): 1901263 (2019)
[126]
Hartland G V. Ultrafast studies of single semiconductor and metal nanostructures through transient absorption microscopy. Chem Sci 1(3): 303–309 (2010)
[127]
Furube A, Tamaki Y, Katoh R. Transient absorption measurement of organic crystals with femtosecond-laser scanning microscopes. J Photochem Photobiol A Chem 183(3): 253–260 (2006)
[128]
Beardmore J P, Antill L M, Woodward J R. Optical absorption and magnetic field effect based imaging of transient radicals. Angew Chem Int Ed 54(29): 8494–8497 (2015)
[129]
Jin C H, Ma E Y, Karni O, Regan E C, Wang F, Heinz T F. Ultrafast dynamics in van der Waals heterostructures. Nat Nanotechnol 13(11): 994–1003 (2018)
[130]
He J Q, Kumar N, Bellus M Z, Chiu H Y, He D W, Wang Y S, Zhao H. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nat Commun 5: 5622 (2014)
[131]
Wei L, Min W. Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal Bioanal Chem 403(8): 2197–2202 (2012)
[132]
Pierno M, Bruschi L, Mistura G, Paolicelli G, di Bona A, Valeri S, Guerra R, Vanossi A, Tosatti E. Frictional transition from superlubric Islands to pinned monolayers. Nat Nanotechnol 10(8): 714–718 (2015)
[133]
Gajurel P, Kim M, Wang Q, Dai W T, Liu H T, Cen C. Vacancy-controlled contact friction in graphene. Adv Funct Mater 27(47): 1702832 (2017)
[134]
Sun X Y, Wu R N, Xia R, Chu X H, Xu Y J. Effects of Stone–Wales and vacancy defects in atomic-scale friction on defective graphite. Appl Phys Lett 104(18): 183109 (2014)
[135]
Minkin A S, Lebedeva I V, Popov A M, Knizhnik A A. Atomic-scale defects restricting structural superlubricity: Ab initio study on the example of the twisted graphene bilayer. Phys Rev B 104(7): 075444 (2021)
[136]
Wang K Q, Qu C Y, Wang J, Quan B G, Zheng Q S. Characterization of a microscale superlubric graphite interface. Phys Rev Lett 125(2): 026101 (2020)
[137]
Chen Z, Kim S H. Measuring nanoscale friction at graphene step edges. Friction 8(4): 802–811 (2020)
[138]
Lin Z, Carvalho B R, Kahn E, Lv R T, Rao R, Terrones H, Pimenta M A, Terrones M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater 3(2): 022002 (2016)
[139]
Hu Z H, Wu Z T, Han C, He J, Ni Z H, Chen W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem Soc Rev 47(9): 3100–3128 (2018)
[140]
Liu H, Wang C, Zuo Z G, Liu D M, Luo J B. Direct visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy. Adv Mater 32(2): 1906540 (2020)
[141]
Liu H, Wang C, Liu D M, Luo J B. Neutral and defect-induced exciton annihilation in defective monolayer WS2. Nanoscale 11(16): 7913–7920 (2019)
[142]
Saitoh K, Hayashi K, Shibayama Y, Shirahama K. Gigantic maximum of nanoscale noncontact friction. Phys Rev Lett 105(23): 236103 (2010)
[143]
Weymouth A J, Meuer D, Mutombo P, Wutscher T, Ondracek M, Jelinek P, Giessibl F J. Atomic structure affects the directional dependence of friction. Phys Rev Lett 111(12): 126103 (2013)
[144]
Langer M, Kisiel M, Pawlak R, Pellegrini F, Santoro G E, Buzio R, Gerbi A, Balakrishnan G, Baratoff A, Tosatti E, et al. Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface. Nat Mater 13(2): 173–177 (2014)
[145]
Xu M C, Grabowski A, Yu N, Kerezyte G, Lee J W, Pfeifer B R, Kim C J. Superhydrophobic drag reduction for turbulent flows in open water. Phys Rev Applied 13(3): 034056 (2020)
[146]
Zhu M F, Ma L R, Luo J B. Research progress in surface properties of propeller and the scientific challenges. Bulletin of National Natural Science Foundation of China 35(2): 213–222 (2021) (in Chinese)
[147]
Wang J D, Wang B, Chen D R. Underwater drag reduction by gas. Friction 2(4): 295–309 (2014)
[148]
Choi H, Lee J, Park H. Wake structures behind a rotor with superhydrophobic-coated blades at low Reynolds number. Phys Fluids 31(1): 015102 (2019)
[149]
Zhu J, Jiang Y J, He D C. Research progress on corrosion and prevention measure of marine propeller. Corrosion Science and Protection Technology 31(4): 443–448 (2019) (in Chinese)
[150]
Wang B, Hao H, Wang K, Zhao Y L, Wei X X, Cao Y H. Current status of research and development of environmentally friendly marine antifouling coatings. Materials Protection 44(8): 56–59, 71 (2011) (in Chinese)
[151]
Tan Y Q, Ma, L J. Analytic calculation and experimental study on the wear of the slide guide of machine tool considering boundary lubrication. Journal of Tribology 142(7): 072201 (2020)
[152]
Li C B, He J, Du Y B, Xiao W H, Wang Z J. Archard model based machine tool wear model and finite element analysis. J Mech Eng 52(15): 106–113 (2016) (in Chinese)
[153]
Zhang Y F, Sun Z L. Wear rate prediction and analysis of metal-matrix of Ni-based super alloy onto cast iron by laser cladding. In: Proceedings of the 7th International Conference on e-Engineering and Digital Enterprise Technology, Shenyang, China, 2009: 1258–1262.
DOI
[154]
Gong C L, Ma P, Zhao C M, Niu X. Simulation and experimental research on load capacity of C-type aerostatic guideway. Lubr Eng 39(6): 66–71 (2014) (in Chinese)
[155]
Harvey F. UN secretary general urges all countries to declare climate emergencies. The Guardian, Place The Guardian (2020)
[156]
[157]
EMIS: China Machinery Sector 2020/2024. EMIS, 2020
[158]
[159]
Holmberg K, Andersson P, Nylund N O, Mäkelä K, Erdemir A. Global energy consumption due to friction in trucks and buses. Tribol Int 78: 94–114 (2014)
[160]
Holmberg K, Kivikytö-Reponen P, Härkisaari P, Valtonen K, Erdemir A. Global energy consumption due to friction and wear in the mining industry. Tribol Int 115: 116–139 (2017)
[161]
Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 5(3): 263–284 (2017)
[162]
Luo C X. The World Encyclopedia of High-speed Trains. Beijing: China Railway Publishing House, 2020. (in Chinese)
[163]
[164]
[165]
[166]
Lin J Y, Li H M, Huang W, Xu W T, Cheng S H. A carbon footprint of high-speed railways in China: A case study of the Beijing–Shanghai line. J Ind Ecol 23(4): 869–878 (2019)
[167]
He Z Y, Zheng Z, Hu H T. Power quality in high-speed railway systems. Int J Rail Transp 4(2): 71–97 (2016)
[168]
[169]
Information on https://www.sohu.com/a/483448981_121106687. (in Chinese)
[170]
National Railway Administration of the People’s Republic of China. 2020 Railway Statistical Bulletin, 2020. (in Chinese)
[171]
Information on http://news.sohu.com/20140117/n393707822.shtml, 2014. (in Chinese)
[172]
Li T, Dai Z Y, Liu J L, Wu N, Zhang W H. Review on aerodynamic drag reduction optimization of high-speed trains in China. J Traff Transp Eng 21(1): 59–80 (2021) (in Chinese)
[173]
Yuan Z W, Wu M L, Tian C, Zhou J J, Chen C. A review on the application of friction models in wheel–rail adhesion calculation. Urban Rail Transit 7(1): 1–11 (2021)
[174]
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 November 2021
Revised: 06 March 2022
Accepted: 21 April 2022
Published: 26 August 2022
Issue date: June 2023

Copyright

© The author(s) 2022.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52075284, 52105195, 51527901, and 11890672) and the Postdoctoral Research Foundation of China (Nos. 2020M680528 and BX2021151).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return