Journal Home > Volume 11 , Issue 1

At present, more and more diseases are associated with the lubrication dysfunction, which requires a systematic study of the complex lubrication behavior of tissues and organs in human body. Natural biomacromolecular lubricants are essential for maintaining ultra-low coefficients of friction between sliding biological interfaces. However, when the surface lubrication performance of tissues or organs destroys heavily, it will bring friction/shear damage for sliding contact interfaces. Therefore, the application of exogenous biological lubricating materials to improve the lubrication situation of damaged tissue or organ interfaces has attracted extensive attention of researchers. In this review, based on a simple summary of lubrication mechanism at sliding biological interface, we systematically introduce the research progress of several kinds of representatively biolubrication materials, including eye drops, tissue anti-adhesion agents, joint lubricants, and medical device lubricants. Meanwhile, the lubrication mechanism and individual advantage and shortcoming for each of these synthetic exogenous lubricated materials are clarified. Correspondingly, the important lubrication application functionality of these biolubricant materials in typically medical surgery scenes, such as dry eye syndrome, tissue adhesion, arthritis, and interventional medical devices, is discussed. Finally, we look forward to the future development direction of artificial biolubricant materials.


menu
Abstract
Full text
Outline
About this article

An overview of functional biolubricants

Show Author's information Lumin YANG1,2Xiaoduo ZHAO1Zhengfeng MA1,3Shuanhong MA1,4( )Feng ZHOU1( )
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai 264006, China

Abstract

At present, more and more diseases are associated with the lubrication dysfunction, which requires a systematic study of the complex lubrication behavior of tissues and organs in human body. Natural biomacromolecular lubricants are essential for maintaining ultra-low coefficients of friction between sliding biological interfaces. However, when the surface lubrication performance of tissues or organs destroys heavily, it will bring friction/shear damage for sliding contact interfaces. Therefore, the application of exogenous biological lubricating materials to improve the lubrication situation of damaged tissue or organ interfaces has attracted extensive attention of researchers. In this review, based on a simple summary of lubrication mechanism at sliding biological interface, we systematically introduce the research progress of several kinds of representatively biolubrication materials, including eye drops, tissue anti-adhesion agents, joint lubricants, and medical device lubricants. Meanwhile, the lubrication mechanism and individual advantage and shortcoming for each of these synthetic exogenous lubricated materials are clarified. Correspondingly, the important lubrication application functionality of these biolubricant materials in typically medical surgery scenes, such as dry eye syndrome, tissue adhesion, arthritis, and interventional medical devices, is discussed. Finally, we look forward to the future development direction of artificial biolubricant materials.

Keywords: medical devices, biolubricants, eye drops, tissue anti-adhesion, arthritis treatment

References(179)

[1]
Pradal C, Yakubov G E, Williams M A K, McGuckin M A, Stokes J R. Lubrication by biomacromolecules: Mechanisms and biomimetic strategies. Bioinspir Biomim 14(5): 051001 (2019)
[2]
Pult H, Tosatti S G P, Spencer N D, Asfour J M, Ebenhoch M, Murphy P J. Spontaneous blinking from a tribological viewpoint. Ocular Surf 13(3): 236–249 (2015)
[3]
Lin C X, Li W, Deng H Y, Li K, Zhou Z R. Friction behavior of esophageal mucosa under axial and circumferential extension. Tribol Lett 67(1): 9 (2019)
[4]
Cleather D J, Goodwin J E, Bull A M J. Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech 28(1): 98–103 (2013)
[5]
Veeregowda D H, Busscher H J, Vissink A, Jager D J, Sharma P K, van der Mei H C. Role of structure and glycosylation of adsorbed protein films in biolubrication. PLoS One 7(8): e42600 (2012)
[6]
Haward S J, Odell J A, Berry M, Hall T. Extensional rheology of human saliva. Rheol Acta 50(11–12): 869–879 (2011)
[7]
Ma S H, Lee H, Liang Y M, Zhou F. Astringent mouthfeel as a consequence of lubrication failure. Angew Chem 128(19): 5887–5891 (2016)
[8]
Thomson W M, Lawrence H P, Broadbent J M, Poulton R. The impact of xerostomia on oral-health-related quality of life among younger adults. Health Qual Life Outcomes 4: 86 (2006)
[9]
Schmidt T A, Sah R L. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthr Cartil 15(1): 35–47 (2007)
[10]
Ruggiero A. Milestones in natural lubrication of synovial joints. Front Mech Eng 6: 52 (2020)
[11]
McNary S M, Athanasiou K A, Reddi A H. Engineering lubrication in articular cartilage. Tissue Eng B Rev 18(2): 88–100 (2012)
[12]
Coles J M, Chang D P, Zauscher S. Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. Curr Opin Colloid Interface Sci 15(6): 406–416 (2010)
[13]
McGuckin M A, Lindén S K, Sutton P, Florin T H. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9(4): 265–278 (2011)
[14]
Thornton D J, Rousseau K, McGuckin M A. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 70: 459–486 (2008)
[15]
Boettcher K, Winkeljann B, Schmidt T A, Lieleg O. Quantification of cartilage wear morphologies in unidirectional sliding experiments: Influence of different macromolecular lubricants. Biotribology 12: 43–51 (2017)
[16]
Marczynski M, Balzer B N, Jiang K, Lutz T M, Crouzier T, Lieleg O. Charged glycan residues critically contribute to the adsorption and lubricity of mucins. Colloids Surf B Biointerfaces 187: 110614 (2020)
[17]
Käsdorf B T, Weber F, Petrou G, Srivastava V, Crouzier T, Lieleg O. Mucin-inspired lubrication on hydrophobic surfaces. Biomacromolecules 18(8): 2454–2462 (2017)
[18]
Yakubov G E, McColl J, Bongaerts J H H, Ramsden J J. Viscous boundary lubrication of hydrophobic surfaces by mucin. Langmuir 25(4): 2313–2321 (2009)
[19]
Crouzier T, Boettcher K, Geonnotti A R, Kavanaugh N L, Hirsch J B, Ribbeck K, Lieleg O. Modulating mucin hydration and lubrication by deglycosylation and polyethylene glycol binding. Adv Mater Interfaces 2(18): 1500308 (2015)
[20]
Marczynski M, Jiang K, Blakeley M, Srivastava V, Vilaplana F, Crouzier T, Lieleg O. Structural alterations of mucins are associated with losses in functionality. Biomacromolecules 22(4): 1600–1613 (2021)
[21]
Petrou G, Crouzier T. Mucins as multifunctional building blocks of biomaterials. Biomater Sci 6(9): 2282–2297 (2018)
[22]
Sharma A, Hindman H B. Aging: A predisposition to dry eyes. J Ophthalmol 2014: 781683 (2014)
[23]
Sakata M, Bolis S, Papas E, Morphett J, Morris C A. Characterisation of mucins in the tear film of ocular prosthesis wearers. Aust N Z J Ophthalmol 24(2): 2–5 (1996)
[24]
Chaturvedi S, Bharti P K, Yadav S K, Singh S. A finite element simulation of MOM (metal-on-metal) hip implant. Lubr Sci 31(5): 210–217 (2019)
[25]
Wang F C, Liu F, Jin Z M. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation. Proc Inst Mech Eng H 218(5): 283–291 (2004)
[26]
He Y F, Zolper T J, Liu P Z, Zhao Y Z, He X L, Shen X J, Sun H W, Duan Q H, Wang Q. Elastohydrodynamic lubrication properties and friction behaviors of several ester base stocks. Friction 3(3): 243–255 (2015)
[27]
Stokes J R, Davies G A. Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology 44(3): 141–160 (2007)
[28]
Tiffany J M. The viscosity of human tears. Int Ophthalmol 15(6): 371–376 (1991)
[29]
Tiffany J.M. Viscoelastic properties of human tears and polymer solutions. In: Lacrimal Gland, Tear Film, and Dry Eye Syndromes. Sullivan D A, Ed. Boston (USA): Springer Boston, MA, 1994: 267–270.
DOI
[30]
Rainer F, Katzer H, Ribitsch V. Correlation between molecular parameters of hyaluronic acid and viscoelasticity of synovia. Acta Med Austriaca 23(4): 133–136 (1996)
[31]
Tavsanli B, Okay O. Macroporous methacrylated hyaluronic acid cryogels of high mechanical strength and flow-dependent viscoelasticity. Carbohydr Polym 229: 115458 (2020)
[32]
Bi Z M, Mueller D W, Zhang C W J. State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication (EHL). Friction 9(2): 207–227 (2021)
[33]
Dowson D. Elastohydrodynamic lubrication in ‘soft-on- soft’ natural synovial joints; ‘hard-on-soft’ cushion and ‘hard-on-hard’ metal-on-metal total joint replacements. In: IUTAM Symposium on Elastohydrodynamics and Micro -elastohydrodynamics. Snidle R W, Evans H P. Eds. Dordrecht (the Netherlands): Springer Dordrecht, 2006: 297–308.
[34]
Medley J B, Dowson D, Wright V. Transient elastohydrodynamic lubrication models for the human ankle joint. Eng Med 13(3): 137–151 (1984)
[35]
Jin Z M, Dowson D. Elastohydrodynamic lubrication in biological systems. Proc Inst Mech Eng Part J J Eng Tribol 219(5): 367–380 (2005)
[36]
Ma L R, Luo J B. Thin film lubrication in the past 20 years. Friction 4(4): 280–302 (2016)
[37]
Moskalewski S, Jankowska-Steifer E. Hydrostatic and boundary lubrication of joints—Nature of boundary lubricant. Ortopedia, Traumatologia, Rehabilitacja 14(1): 13–21 (2012)
[38]
Jahn S, Seror J, Klein J. Lubrication of articular cartilage. Annu Rev Biomed Eng 18: 235–258 (2016)
[39]
Crockett R. Boundary lubrication in natural articular joints. Tribol Lett 35(2): 77–84 (2009)
[40]
Hills B A. Boundary lubrication in vivo. Proc Inst Mech Eng H 214(1): 83–94 (2000)
[41]
Jahn S, Klein J. Hydration lubrication: The macromolecular domain. Macromolecules 48(15): 5059–5075 (2015)
[42]
Fam H, Kontopoulou M, Bryant J T. Effect of concentration and molecular weight on the rheology of hyaluronic acid/ bovine calf serum solutions. Biorheology 46(1): 31–43 (2009)
[43]
Michaud T. Rheology of hyaluronic acid and dynamic facial rejuvenation: Topographical specificities. J Cosmet Dermatol 17(5): 736–743 (2018)
[44]
Singh A, Corvelli M, Unterman S A, Wepasnick K A, McDonnell P, Elisseeff J H. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mater 13(10): 988–995 (2014)
[45]
Liu P X, Liu Y H, Yang Y, Chen Z, Li J J, Luo J B. Mechanism of biological liquid superlubricity of brasenia schreberi mucilage. Langmuir 30(13): 3811–3816 (2014)
[46]
Van der Heide E, Zeng X, Masen M A. Skin tribology: Science friction? Friction 1(2): 130–142 (2013)
[47]
Cook S G, Bonassar L J. Interaction with cartilage increases the viscosity of hyaluronic acid solutions. ACS Biomater Sci Eng 6(5): 2787–2795 (2020)
[48]
Hlaváček M. Lubrication of the human ankle joint in walking. J Tribol 132(1): 011201 (2010)
[49]
Klein J. Hydration lubrication. Friction 1(1): 1–23 (2013)
[50]
Ma L R, Gaisinskaya-Kipnis A, Kampf N, Klein J. Origins of hydration lubrication. Nat Commun 6: 6060 (2015)
[51]
Gaisinskaya A, Ma L R, Silbert G, Sorkin R, Tairy O, Goldberg R, Kampf N, Klein J. Hydration lubrication: Exploring a new paradigm. Faraday Discuss 156: 217–233 (2012)
[52]
Wang C B, Bai X Q, Dong C L, Guo Z W, Yuan C Q, Neville A. Designing soft/hard double network hydrogel microsphere/UHMWPE composites to promote water lubrication performance. Friction 9(3): 551–568 (2021)
[53]
Li J J, Cao W, Wang Z N, Ma M, Luo J B. Origin of hydration lubrication of zwitterions on graphene. Nanoscale 10(35): 16887–16894 (2018)
[54]
Yu J, Wang K, Fan C C, Zhao X Y, Gao J S, Jing W H, Zhang X P, Li J, Li Y, Yang J H, et al. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv Mater 33(16): 2008395 (2021)
[55]
Zhao X Y, Yang J H, Liu Y, Gao J S, Wang K, Liu W G. An injectable and antifouling self-fused supramolecular hydrogel for preventing postoperative and recurrent adhesions. Chem Eng J 404: 127096 (2021)
[56]
Ribeiro M V M R, Barbosa F T, Ribeiro L E F, de Sousa-Rodrigues C F, Ribeiro E A N. Effectiveness of using preservative-free artificial tears versus preserved lubricants for the treatment of dry eyes: A systematic review. Arquivos Brasileiros Oftalmol 82(5): 436–445 (2019)
[57]
Zheng X D, Goto T, Ohashi Y. Comparison of in vivo efficacy of different ocular lubricants in dry eye animal models. Invest Ophthalmol Vis Sci 55(6): 3454–3460 (2014)
[58]
Kiss H J, Németh J. Isotonic glycerol and sodium hyaluronate containing artificial tear decreases conjunctivochalasis after one and three months: A self-controlled, unmasked study. PLoS One 10(7): e0132656 (2015)
[59]
Murube J. Triple classification of diagnosis of dry eyes. Ocular Surf 6(2): 61–69 (2008)
[60]
Vivino F B. Sjogren’s syndrome: Clinical aspects. Clin Immunol 182: 48–54 (2017)
[61]
Hayashi T, Fatt I. A lubrication theory model of tear exchange under a soft contact lens. Am J Optom Physiol Opt 53(3): 101–103 (1976)
[62]
Zubkov V S, Breward C J W, Gaffney E A. Meniscal tear film fluid dynamics near Marx’s line. Bull Math Biol 75(9): 1524–1543 (2013)
[63]
Patterson M, Vogel H J, Prenner E J. Biophysical characterization of monofilm model systems composed of selected tear film phospholipids. Biochim Biophys Acta BBA Biomembr 1858(2): 403–414 (2016)
[64]
Rangarajan R, Kraybill B, Ogundele A, Ketelson H A. Effects of a hyaluronic acid/hydroxypropyl guar artificial tear solution on protection, recovery, and lubricity in models of corneal epithelium. J Ocular Pharmacol Ther 31(8): 491–497 (2015)
[65]
McGinnigle S, Eperjesi F, Naroo S A. A preliminary investigation into the effects of ocular lubricants on higher order aberrations in normal and dry eye subjects. Contact Lens Anterior Eye 37(2): 106–110 (2014)
[66]
Lievens C, Berdy G, Douglass D, Montaquila S, Lin H, Simmons P, Carlisle-Wilcox C, Vehige J, Haque S. Evaluation of an enhanced viscosity artificial tear for moderate to severe dry eye disease: A multicenter, double-masked, randomized 30-day study. Contact Lens Anterior Eye 42(4): 443–449 (2019)
[67]
Uchiyama E, di Pascuale M A, Butovich I A, McCulley J P. Impact on ocular surface evaporation of an artificial tear solution containing hydroxypropyl (HP) guar. Eye Contact Lens 34(6): 331–334 (2008)
[68]
Simmons P A, Carlisle-Wilcox C, Chen R, Liu H X, Vehige J G. Efficacy, safety, and acceptability of a lipid-based artificial tear formulation: A randomized, controlled, multicenter clinical trial. Clin Ther 37(4): 858–868 (2015)
[69]
Liu Z, Lin W F, Fan Y X, Kampf N, Wang Y L, Klein J. Effects of hyaluronan molecular weight on the lubrication of cartilage-emulating boundary layers. Biomacromolecules 21(10): 4345–4354 (2020)
[70]
Ahmed F, Tost F, Großjohann R, Wolke C, Lendeckel U. Evaluation of protection against desiccation with different artificial tears containing 0.1%–0.3% hyaluronic acid in experimental dry eye model. Available on https://doi.org/10.21203/rs.3.rs-79468/v1, 2020.
[71]
Zhu Y X, Granick S. Biolubrication: Hyaluronic acid and the influence on its interfacial viscosity of an antiinflammatory drug. Macromolecules 36(4): 973–976 (2003)
[72]
Simmons P A, Vehige J G. Investigating the potential benefits of a new artificial tear formulation combining two polymers. Clin Ophthalmol 11: 1637–1642 (2017)
[73]
Shi X F, Cantu-Crouch D, Sharma V, Pruitt J, Yao G, Fukazawa K, Wu J Y L, Ishihara K. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Colloids Surf B Biointerfaces 199: 111539 (2021)
[74]
Wu M F, Stachon T, Seitz B, Langenbucher A, Szentmáry N. Effect of human autologous serum and fetal bovine serum on human corneal epithelial cell viability, migration and proliferation in vitro. Int J Ophthalmol 10(6): 908–913 (2017)
[75]
Szentmáry N, Stachon T, Wu M F, Bischoff M, Huber M, Langenbucher A, Seitz B. Growth factor concentration in keratocyte supernatant after incubation with human serum in vitro. Klin Monatsbl Augenh 235(7): 840–845 (2018)
[76]
Markoulli M, Kolanu S. Contact lens wear and dry eyes: Challenges and solutions. Clin Optom 9: 41–48 (2017)
[77]
Ćuruvija Opačić K. Correction of astigmatism with contact lenses. Acta Clinica Croatica 51(2): 305–307 (2012)
[78]
Findik F. A case study on the selection of materials for eye lenses. ISRN Mech Eng 2011(3): 160671 (2011)
[79]
Morgan P B, Efron N, Helland M, Itoi M, Jones D, Nichols J J, van der Worp E, Woods C A. Twenty first century trends in silicone hydrogel contact lens fitting: An international perspective. Contact Lens Anterior Eye 33(4): 196–198 (2010)
[80]
Dunn A C, Tichy J A, Urueña J M, Sawyer W G. Lubrication regimes in contact lens wear during a blink. Tribol Int 63: 45–50 (2013)
[81]
Singh A, Li P, Beachley V, McDonnell P, Elisseeff J H. A hyaluronic acid-binding contact lens with enhanced water retention. Contact Lens Anterior Eye 38(2): 79–84 (2015)
[82]
Chang W H, Liu P Y, Lin M H, Lu C J, Chou H Y, Nian C Y, Jiang Y T, Hsu Y H H. Applications of hyaluronic acid in ophthalmology and contact lenses. Molecules 26(9): 2485 (2021)
[83]
Yu Y F, Hsu K H, Gharami S, Butler J E, Hazra S, Chauhan A. Interfacial polymerization of a thin film on contact lenses for improving lubricity. J Colloid Interface Sci 571: 356–367 (2020)
[84]
Lih E, Oh S H, Joung Y K, Lee J H, Han D K. Polymers for cell/tissue anti-adhesion. Prog Polym Sci 44: 28–61 (2015)
[85]
Lee M W, Yang T P, Peng H H, Chen J W. Preparation and characterization of polygalacturonic acid/rosmarinic acid membrane crosslinked by short chain hyaluronate for preventing postoperative abdominal adhesion. Carbohydr Polym 87(2): 1749–1755 (2012)
[86]
Park J Y, Park S H, Ju H J, Ji Y B, Yun H W, Min B H, Kim M S. Preparation of a cross-linked cartilage acellular matrix-poly (caprolactone-ran-lactide-ran-glycolide) film and testing its feasibility as an anti-adhesive film. Mater Sci Eng C 117: 111283 (2020)
[87]
Lee J W, Park J Y, Park S H, Kim M J, Song B R, Yun H W, Kang T W, Choi H S, Kim Y J, Min B H, et al. Cross-linked electrospun cartilage acellular matrix/poly(caprolactone- co-lactide-co-glycolide) nanofiber as an antiadhesive barrier. Acta Biomater 74: 192–206 (2018)
[88]
Gerner-Rasmussen J, Burcharth J, Gögenur I. The efficacy of adhesiolysis on chronic abdominal pain: A systematic review. Langenbecks Arch Surg 400(5): 567–576 (2015)
[89]
Brochhausen C, Schmitt V H, Planck C N E, Rajab T K, Hollemann D, Tapprich C, Krämer B, Wallwiener C, Hierlemann H, Zehbe R, et al. Current strategies and future perspectives for intraperitoneal adhesion prevention. J Gastrointest Surg 16(6): 1256–1274 (2012)
[90]
Akasaka T, Nishida J, Imaeda T, Shimamura T, Amadio P C, An K N. Effect of hyaluronic acid on the excursion resistance of tendon graft: A biomechanical in vitro study in a modified human model. Clin Biomech 21(8): 810–815 (2006)
[91]
Kim M, Hwang Y M, Tae G Y. The enhanced anti-tissue adhesive effect of injectable pluronic–HA hydrogel by poly(γ-glutamic acid). Int J Biol Macromol 93: 1603–1611 (2016)
[92]
Xia W S, Liu P, Zhang J L, Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2): 170–179 (2011)
[93]
Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29(1): 17–25 (2007)
[94]
Wu Y, Huang Y C, Zhou Y, Ren X E, Yang F. Degradation of chitosan by swirling cavitation. Innov Food Sci Emerg Technol 23: 188–193 (2014)
[95]
Loring S H, Butler J P. Potential hydrodynamic origin of frictional transients in sliding mesothelial tissues. Friction 1(2): 163–177 (2013)
[96]
Wang Y, Cheng L, Wen S Z, Zhou S B, Wang Z, Deng L F, Mao H Q, Cui W G, Zhang H Y. Ice-inspired superlubricated electrospun nanofibrous membrane for preventing tissue adhesion. Nano Lett 20(9): 6420–6428 (2020)
[97]
Cheng L, Wang Y, Sun G M, Wen S Z, Deng L F, Zhang H Y, Cui W G. Hydration-enhanced lubricating electrospun nanofibrous membranes prevent tissue adhesion. Research 2020: 4907185 (2020)
[98]
Lin L X, Luo J W, Yuan F, Zhang H H, Ye C Q, Zhang P, Sun Y L. In situ cross-linking carbodiimide-modified chitosan hydrogel for postoperative adhesion prevention in a rat model. Mater Sci Eng C 81: 380–385 (2017)
[99]
Zhang Z, Ni J, Chen L, Yu L, Xu J W, Ding J D. Biodegradable and thermoreversible PCLA–PEG–PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 32(21): 4725–4736 (2011)
[100]
Morita S, Takagi T, Abe R, Tsujimoto H, Ozamoto Y, Torii H, Hagiwara A. Newly developed polyglycolic acid reinforcement unified with sodium alginate to prevent adhesion. Biomed Res Int 2018: 4515949 (2018)
[101]
Wu W, Ni Q, Xiang Y, Dai Y, Jiang S, Wan L P, Liu X N, Cui W G. Fabrication of a photo-crosslinked gelatin hydrogel for preventing abdominal adhesion. RSC Adv 6(95): 92449–92453 (2016)
[102]
Falabella C A, Melendez M M, Weng L H, Chen W L. Novel macromolecular crosslinking hydrogel to reduce intra-abdominal adhesions. J Surg Res 159(2): 772–778 (2010)
[103]
Tang X X, Gu X Y, Wang Y L, Chen X L, Ling J, Yang Y M. Stable antibacterial polysaccharide-based hydrogels as tissue adhesives for wound healing. RSC Adv 10(29): 17280–17287 (2020)
[104]
Fujita M, Policastro G M, Burdick A, Lam H T, Ungerleider J L, Braden R L, Huang D, Osborn K G, Omens J H, Madani M M, et al. Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nat Commun 12(1): 3764 (2021)
[105]
Zhang E S, Song B Y, Shi Y J, Zhu H, Han X F, Du H, Yang C B, Cao Z Q. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion. Proc Natl Acad Sci 117(50): 32046–32055 (2020)
[106]
Gong J P. Friction and lubrication of hydrogels—Its richness and complexity. Soft Matter 2(7): 544–552 (2006)
[107]
LeBaron R G, Athanasiou K A. Ex vivo synthesis of articular cartilage. Biomaterials 21(24): 2575–2587 (2000)
[108]
Murakami T, Sawae Y, Ihara M. Protective mechanism of articular cartilage to severe loading: Roles of lubricants, cartilage surface layer, extracellular matrix and chondrocyte. JSME Int J C Mech Sy 46(2): 594–603 (2003)
[109]
Murakami T, Yarimitsu S, Nakashima K, Yamaguchi T, Sawae Y, Sakai N, Suzuki A. Superior lubricity in articular cartilage and artificial hydrogel cartilage. Proc Inst Mech Eng Part J J Eng Tribol 228(10): 1099–1111 (2014)
[110]
Neu C P, Komvopoulos K, Reddi A H. The interface of functional biotribology and regenerative medicine in synovial joints. Tissue Eng Part B Rev 14(3): 235–247 (2008)
[111]
Zauscher S. Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. In: Proceedings of the Abstracts of Papers of the American Chemical Society, Washington, 2012: 406–416.
[112]
Klein J. Chemistry: Repair or replacement—A joint perspective. Science 323(5910): 47–48 (2009)
[113]
Xue F X, Zhang H, Hu J L. Liu Y C. Hyaluronic acid nanofibers crosslinked with a nontoxic reagent. Carbohydr Polym 259: 117757 (2021)
[114]
Benz M, Chen N H, Israelachvili J. Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus. J Biomed Mater Res A 71(1): 6–15 (2004)
[115]
Tadmor R, Chen N H, Israelachvili J. Normal and shear forces between mica and model membrane surfaces with adsorbed hyaluronan. Macromolecules 36(25): 9519–9526 (2003)
[116]
Chikama H. The role of protein and hyaluronic acid in the synovial fluid in animal joint lubrication. Nihon Seikeigeka Gakkai Zasshi 59(5): 559–572 (1985)
[117]
Bełdowski P, Yuvan S, Dėdinaitė A, Claesson P M, Pöschel T. Interactions of a short hyaluronan chain with a phospholipid membrane. Colloids Surf B Biointerfaces 184: 110539 (2019)
[118]
Lee S H, Spencer N D. Materials science: Sweet, hairy, soft, and slippery. Science 319(5863): 575–576 (2008)
[119]
Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters L J. Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370(6491): 634–636 (1994)
[120]
Tadmor R, Janik J, Klein J, Fetters L J. Sliding friction with polymer brushes. Phys Rev Lett 91(11): 115503 (2003)
[121]
Kobayashi M, Takahara A. Tribological properties of hydrophilic polymer brushes under wet conditions. Chem Rec 10(4): 208–216 (2010)
[122]
Svensson O, Arnebrant T. Mucin layers and multilayers— Physicochemical properties and applications. Curr Opin Colloid Interface Sci 15(6): 395–405 (2010)
[123]
De Beer S, Kenmoé G D, Müser M H. On the friction and adhesion hysteresis between polymer brushes attached to curved surfaces: Rate and solvation effects. Friction 3(2): 148–160 (2015)
[124]
Lotz M. Osteoarthritis year 2011 in review: Biology. Osteoarthr Cartil 20(3): 192–196 (2012)
[125]
Batchelor A W, Stachowiak G. Arthritis and the interacting mechanisms of synovial joint lubrication, Part I—Operating conditions and the environment. J Orthop Rheumatol 9: 3–10 (1996)
[126]
Batchelor A W, Stachowiak G. Arthritis and the interacting mechanisms of synovial joint lubrication, Part II—Joint lubrication and its relation to arthritis. J Orthop Rheumatol 9: 11–21 (1996)
[127]
Liu G Q, Cai M R, Zhou F, Liu W M. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. J Phys Chem B 118(18): 4920–4931 (2014)
[128]
Dėdinaitė A, Wieland D C F, Bełdowski P, Claesson P M. Biolubrication synergy: Hyaluronan–phospholipid interactions at interfaces. Adv Colloid Interface Sci 274: 102050 (2019)
[129]
Zheng Y W, Yang J L, Liang J, Xu X Y, Cui W G, Deng L F, Zhang H Y. Bioinspired hyaluronic acid/phosphorylcholine polymer with enhanced lubrication and anti-inflammation. Biomacromolecules 20(11): 4135–4142 (2019)
[130]
Li L Z, Wang D, Wang X J, Bai R F, Wang C Y, Gao Y, Anastassiades T. N-Butyrylated hyaluronic acid ameliorates gout and hyperuricemia in animal models. Pharm Biol 57(1): 717–728 (2019)
[131]
Vandeweerd J M, Innocenti B, Rocasalbas G, Gautier S E, Douette P, Hermitte L, Hontoir F, Chausson M. Non-clinical assessment of lubrication and free radical scavenging of an innovative non-animal carboxymethyl chitosan biomaterial for viscosupplementation: An in-vitro and ex-vivo study. PLoS One 16(10): e0256770 (2021)
[132]
Sawitzke A D, Shi H L, Finco M F, Dunlop D D, Bingham III C O, Harris C L, Singer N G, Bradley J D, Silver D, Jackson C G, et al. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: A report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum 58(10): 3183–3191 (2008)
[133]
Bauerova K, Ponist S, Kuncirova V, Mihalova D, Paulovicova E, Volpi N. Chondroitin sulfate effect on induced arthritis in rats. Osteoarthr Cartil 19(11): 1373–1379 (2011)
[134]
Wathier M, Lakin B A, Bansal P N, Stoddart S S, Snyder B D, Grinstaff M W. A large-molecular-weight polyanion, synthesized via ring-opening metathesis polymerization, as a lubricant for human articular cartilage. J Am Chem Soc 135(13): 4930–4933 (2013)
[135]
Hartung W, Drobek T, Lee S, Zürcher S, Spencer N D. The influence of anchoring-group structure on the lubricating properties of brush-forming graft copolymers in an aqueous medium. Tribol Lett 31(2): 119–128 (2008)
[136]
Lee S H, Müller M, Ratoi-Salagean M, Vörös J, Pasche S, De Paul S M, Spikes H A, Textor M, Spencer N D. Boundary lubrication of oxide surfaces by poly(L-lysine)- g-poly(ethylene glycol) (PLL-g-PEG) in aqueous media. Tribol Lett 15(3): 231–239 (2003)
[137]
Hartung W, Rossi A, Lee S H, Spencer N D. Aqueous lubrication of SiC and Si3N4 ceramics aided by a brush- like copolymer additive, poly(L-lysine)-graft-poly(ethylene glycol). Tribol Lett 34(3): 201–210 (2009)
[138]
Perry S S, Yan X P, Limpoco F T, Lee S H, Müller M, Spencer N D. Tribological properties of poly(L-lysine)- graft-poly(ethylene glycol) films: Influence of polymer architecture and adsorbed conformation. ACS Appl Mater Interfaces 1(6): 1224–1230 (2009)
[139]
Pettersson T, Naderi A, Makuška R, Claesson P M. Lubrication properties of bottle-brush polyelectrolytes: An AFM study on the effect of side chain and charge density. Langmuir 24(7): 3336–3347 (2008)
[140]
Uemura A, Ogawa S, Isono Y, Tanaka R. Elucidation of the time-dependent degradation process in insoluble hyaluronic acid formulations with a controlled degradation rate. J Tissue Eng 10: DOI 2041731419885032 (2019)
[141]
Yang J L, Han Y, Lin J W, Zhu Y, Wang F, Deng L F, Zhang H Y, Xu X Y, Cui W G. Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small 16(44): e2004519 (2020)
[142]
Lu H D, Zhao H Q, Wang K, Lv L L. Novel hyaluronic acid–chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int J Pharm 420(2): 358–365 (2011)
[143]
Wang Y X, Sun Y L, Gu Y H, Zhang H Y. Articular cartilage-inspired surface functionalization for enhanced lubrication. Adv Mater Interfaces 6(12): 1900180 (2019)
[144]
Zhao W W, Wang H, Han Y, Wang H M, Sun Y L, Zhang H Y. Dopamine/phosphorylcholine copolymer as an efficient joint lubricant and ROS scavenger for the treatment of osteoarthritis. ACS Appl Mater Interfaces 12(46): 51236–51248 (2020)
[145]
Yang L M, Zhao X D, Zhang J, Ma S H, Jiang L, Wei Q B, Cai M R, Zhou F. Synthesis of charged chitosan nanoparticles as functional biolubricant. Colloids Surf B Biointerfaces 206: 111973 (2021)
[146]
Ko J Y, Choi Y J, Jeong G J, Im G I. Sulforaphane–PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials 34(21): 5359–5368 (2013)
[147]
Ji X L, Yan Y F, Sun T, Zhang Q, Wang Y X, Zhang M, Zhang H Y, Zhao X. Glucosamine sulphate-loaded distearoyl phosphocholine liposomes for osteoarthritis treatment: Combination of sustained drug release and improved lubrication. Biomater Sci 7(7): 2716–2728 (2019)
[148]
Yan Y F, Sun T, Zhang H B, Ji X L, Sun Y L, Zhao X, Deng L F, Qi J, Cui W G, Santos H A, et al. Euryale ferox seed-inspired superlubricated nanoparticles for treatment of osteoarthritis. Adv Funct Mater 29(4): 1807559 (2019)
[149]
Tan X L, Sun Y L, Sun T, Zhang H Y. Mechanised lubricating silica nanoparticles for on-command cargo release on simulated surfaces of joint cavities. Chem Commun 55(18): 2593–2596 (2019)
[150]
Chen H, Sun T, Yan Y F, Ji X L, Sun Y L, Zhao X, Qi J, Cui W G, Deng L F, Zhang H Y. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials 242: 119931 (2020)
[151]
Zhao W W, Wang H, Wang H M, Han Y, Zheng Z B, Liu X D, Feng B, Zhang H Y. Light-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug delivery and lubrication enhancement for the treatment of osteoarthritis. Nanoscale 13(13): 6394–6399 (2021)
[152]
Kwon H J, Gong J P. Negatively charged polyelectrolyte gels as bio-tissue model system and for biomedical application. Curr Opin Colloid Interface Sci 11(6): 345–350 (2006)
[153]
Sarkar A, Kanti F, Gulotta A, Murray B S, Zhang S Y. Aqueous lubrication, structure and rheological properties of whey protein microgel particles. Langmuir 33(51): 14699–14708 (2017)
[154]
Liu G Q, Wang X L, Zhou F, Liu W M. Tuning the tribological property with thermal sensitive microgels for aqueous lubrication. ACS Appl Mater Interfaces 5(21): 10842–10852 (2013)
[155]
Han Y, Yang J L, Zhao W W, Wang H M, Sun Y L, Chen Y J, Luo J, Deng L F, Xu X Y, Cui W G, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact Mater 6(10): 3596–3607 (2021)
[156]
Liu G Q, Liu Z L, Li N, Wang X L, Zhou F, Liu W M. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl Mater Interfaces 6(22): 20452–20463 (2014)
[157]
Zewail M, Nafee N, Helmy M W, Boraie N. Synergistic and receptor-mediated targeting of arthritic joints via intra-articular injectable smart hydrogels containing leflunomide-loaded lipid nanocarriers. Drug Deliv Transl Res 11(6): 2496–2519 (2021)
[158]
Kanazawa T, Tamano K, Sogabe K, Endo T, Ibaraki H, Takashima Y, Seta Y S. Intra-articular retention and anti-arthritic effects in collagen-induced arthritis model mice by injectable small interfering RNA containing hydrogel. Biol Pharm Bull 40(11): 1929–1933 (2017)
[159]
Kuang L J, Ma X Y, Ma Y F, Yao Y, Tariq M, Yuan Y, Liu C S. Self-assembled injectable nanocomposite hydrogels coordinated by in situ generated CaP nanoparticles for bone regeneration. ACS Appl Mater Interfaces 11(19): 17234–17246 (2019)
[160]
Teng B H, Zhang S Q, Pan J J, Zeng Z Q, Chen Y, Hei Y, Fu X M, Li Q, Ma M, Sui Y, et al. A chondrogenesis induction system based on a functionalized hyaluronic acid hydrogel sequentially promoting hMSC proliferation, condensation, differentiation, and matrix deposition. Acta Biomater 122: 145–159 (2021)
[161]
Kim T, Suh J, Kim W J. Polymeric aggregate-embodied hybrid nitric-oxide-scavenging and sequential drug-releasing hydrogel for combinatorial treatment of rheumatoid arthritis. Adv Mater 33(34): 2008793 (2021)
[162]
Wei J J, Ran P, Li Q Y, Lu J F, Zhao L, Liu Y, Li X H. Hierarchically structured injectable hydrogels with loaded cell spheroids for cartilage repairing and osteoarthritis treatment. Chem Eng J 430(1): 132211 (2022)
[163]
Zhang F X, Liu P, Ding W, Meng Q B, Su D H, Zhang Q C, Lian R X, Yu B Q, Zhao M D, Dong J, et al. Injectable mussel-inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration. Biomaterials 278: 121169 (2021)
[164]
Lei Y T, Wang Y P, Shen J L, Cai Z W, Zeng Y S, Zhao P, Liao J Y, Lian C J, Hu N, Luo X J, et al. Stem cell-recruiting injectable microgels for repairing osteoarthritis (adv. funct. mater. 48/2021). Adv Funct Materials 31(48): 2170357 (2021)
[165]
Yong Y, Qiao M Y, Chiu A, Fuchs S, Liu Q S, Pardo Y, Worobo R, Liu Z, Ma M L. Conformal hydrogel coatings on catheters to reduce biofouling. Langmuir 35(5): 1927–1934 (2019)
[166]
Røn T, Javakhishvili I, Jeong S, Jankova K, Lee S. Low friction thermoplastic polyurethane coatings imparted by surface segregation of amphiphilic block copolymers. Colloid Interface Sci Commun 44: 100477 (2021)
[167]
Zhou S S, Qian S H, Wang W, Ni Z F, Yu J H. Fabrication of a hydrophilic low-friction poly(hydroxyethyl methacrylate) coating on silicon rubber. Langmuir 37(45): 13493–13500 (2021)
[168]
MacCallum N, Howell C, Kim P, Sun D, Friedlander R, Ranisau J, Ahanotu O, Lin J J, Vena A, Hatton B, et al. Liquid-infused silicone as a biofouling-free medical material. ACS Biomater Sci Eng 1(1): 43–51 (2015)
[169]
Wan H P, Lin C X, Kaper H J, Sharma P K. A polyethylene glycol functionalized hyaluronic acid coating for cardiovascular catheter lubrication. Mater Des 196: 109080 (2020)
[170]
Li Y P, Liu W, Liu Y H, Ren Y, Wang Z G, Zhao B S, Huang S S, Xu J Z, Li Z M. Highly improved aqueous lubrication of polymer surface by noncovalently bonding hyaluronic acid-based hydration layer for endotracheal intubation. Biomaterials 262: 120336 (2020)
[171]
Yao X, Liu J J, Yang C H, Yang X X, Wei J C, Xia Y, Gong X Y Suo Z G. Hydrogel paint. Adv Mater 31(39): e1903062 (2019)
[172]
Driver M. 7-coatings for cardiovascular devices: Coronary stents. In: Coatings for Biomedical Applications. Driver M, Ed. Cambridge (UK): Woodhead Publishing, 2012: 223–250.
DOI
[173]
Jang H, Choi H, Jeong H, Baek S, Han S, Chung D J, Lee H S. Thermally crosslinked biocompatible hydrophilic polyvinylpyrrolidone coatings on polypropylene with enhanced mechanical and adhesion properties. Macromol Res 26(2): 151–156 (2018)
[174]
Xie Y C, Yang Q F. Surface modification of poly(vinyl chloride) for antithrombogenicity study. J Appl Polym Sci 85(5): 1013–1018 (2002)
[175]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849): 426–430 (2007)
[176]
Ryu J H, Messersmith P B, Lee H. Polydopamine surface chemistry: A decade of discovery. ACS Appl Mater Interfaces 10(9): 7523–7540 (2018)
[177]
Song J, Lutz T M, Lang N, Lieleg O. Bioinspired dopamine/mucin coatings provide lubricity, wear protection, and cell-repellent properties for medical applications. Adv Healthc Mater 10(4): 2000831 (2021)
[178]
Wei Q B, Yue Q Y, Li L L, Fu T, Ma S H, Zhou F. Polydopamine assisted co-assembly for fabrication of zwitterionic polymer nanocoating with efficient aqueous lubrication. Tribology 39(4): 387–395 (2019) (in Chinese)
[179]
Wei Q B, Liu X Q, Yue Q Y, Ma S H, Zhou F. Mussel- inspired one-step fabrication of ultralow-friction coatings on diverse biomaterial surfaces. Langmuir 35(24): 8068–8075 (2019)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 November 2021
Revised: 20 January 2022
Accepted: 19 February 2022
Published: 21 May 2022
Issue date: January 2023

Copyright

© The author(s) 2022.

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (22032006 and 52075522), Key Research Project of Shandong Provincial Natural Science Foundation (ZR2021ZD27), Outstanding Youth Fund of Gansu Province (21JR7RA095), and LICP Cooperation Foundation for Young Scholars (HZJJ21-04).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return