Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Graphene-oxide (GO) has been recognized as an excellent lubrication material owing to its two-dimensional structure and weak interlayer interactions. However, the functional groups of GO that can contribute to anti-friction, anti-wear, and superlubricity are yet to be elucidated. Hence, further improvement in GO-family materials in tribology and superlubricity fields is impeded. In this study, macroscale superlubricity with a coefficient of friction of less than 0.01 is achieved by exploiting the high adhesive force between amino groups within aminated GO (GO–NH2) nanosheets and SiO2. It was observed that GO–NH2 nanosheets form a robust adsorption layer on the worn surfaces owing to the high adsorption of amino groups. This robust GO–NH2 adsorption layer not only protects the contact surfaces and contributes to low wear, but also causes the shearing plane to transform constantly from solid asperities (high friction) into GO–NH2 interlayers (weak interlayer interactions), resulting in superlubricity. A SiO2-containing boundary layer formed by tribochemical reactions and a liquid film are conducive to low friction. Such macroscale liquid superlubricity provides further insights into the effect of functional groups within functionalized GO materials and a basis for designing functionalized GO materials with excellent tribological performances.
676
Views
26
Downloads
21
Crossref
22
Web of Science
23
Scopus
2
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.