Journal Home > Volume 9 , Issue 5

The effect of grain boundary (GB) defects on the tribological properties of MoS2 has been investigated by molecular dynamics (MD) simulations. The GB defects-containing MoS2 during scratching process shows a lower critical breaking load than that of indentation process, owing to the combined effect of pushing and interlocking actions between the tip and MoS2 atoms. The wear resistance of MoS2 with GB defects is relevant to the misorientation angle due to the accumulation of long Mo-S bonds around the GBs. Weakening the adhesion strength between the MoS2 and substrate is an efficient way to improve the wear resistance of MoS2 with low-angle GBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A molecular dynamics study on the tribological behavior of molybdenum disulfide with grain boundary defects during scratching processes

Show Author's information Boyu WEI1Ning KONG1( )Jie ZHANG1Hongbo LI1Zhenjun HONG1Hongtao ZHU2Yuan ZHUANG3Bo WANG3
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Beijing Institute of Spacecraft System Engineering, Beijing 100094, China

Abstract

The effect of grain boundary (GB) defects on the tribological properties of MoS2 has been investigated by molecular dynamics (MD) simulations. The GB defects-containing MoS2 during scratching process shows a lower critical breaking load than that of indentation process, owing to the combined effect of pushing and interlocking actions between the tip and MoS2 atoms. The wear resistance of MoS2 with GB defects is relevant to the misorientation angle due to the accumulation of long Mo-S bonds around the GBs. Weakening the adhesion strength between the MoS2 and substrate is an efficient way to improve the wear resistance of MoS2 with low-angle GBs.

Keywords: MoS2, grain boundary, molecular dynamics, tribological behavior, misorientation angle

References(61)

[1]
Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H. 2D materials and van der Waals heterostructures. Science 353(6298): aac9439 (2016)
[2]
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater 2(8): 17033 (2017)
[3]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nature Nanotech 7(11): 699-712 (2012)
[4]
Androulidakis C, Zhang K, Robertson M, Tawfick S. Tailoring the mechanical properties of 2D materials and heterostructures. 2D Mater 5(3): 032005 (2018)
[5]
Zhang S, Ma T B, Erdemir A, Li Q Y. Tribology of two-dimensional materials: From mechanisms to modulating strategies. Mater Today 26: 67-86 (2019)
[6]
Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. Acs Nano 5(12): 9703-9709 (2011)
[7]
Stewart J A, Spearot D E. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Modelling Simul Mater Sci Eng 21(4): 045003 (2013)
[8]
Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agraït N, Rubio-Bollinger G. Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24(6): 772-775 (2012)
[9]
Jiang J W, Qi Z N, Park H S, Rabczuk T. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect. Nanotechnology 24(43): 435705 (2013)
[10]
Spear J C, Ewers B W, Batteas J D. 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 10(3): 301-314 (2015)
[11]
Lee C, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Frictional characteristics of atomically thin sheets. Science 328(5974): 76-80 (2010)
[12]
Chhowalla M, Amaratunga G A J. Thin films of fullerene- like MoS2 nanoparticles with ultra-low friction and wear. Nature 407(6801): 164-167 (2000)
[13]
Furlan K P, de Mello J D B, Klein A N. Self-lubricating composites containing MoS2: A review. Tribol Int 120: 280-298 (2018)
[14]
Kong N, Wei B Y, Li D S, Zhuang Y, Sun G P, Wang B. A study on the tribological property of MoS2/Ti-MoS2/ Si multilayer nanocomposite coating deposited by magnetron sputtering. Rsc Adv 10(16): 9633-9642 (2020)
[15]
Zeng X, Peng Y, Lang H, Yu K. Probing the difference in friction performance between graphene and MoS2 by manipulating the silver nanowires. J Mater Sci 54(1): 540-551 (2019)
[16]
Khac B C, Chung K H. Quantitative assessment of friction characteristics of single-layer MoS2 and graphene using atomic force microscopy. J Nanosci Nanotech 16(5): 4428-4433 (2016)
[17]
Li H, Wang J, Gao S, Chen Q, Peng L, Liu K, Wei X. Superlubricity between MoS2 Monolayers. Adv Mater 29(27): 1701474 (2017)
[18]
Dietzel D, Brndiar J, Štich I, Schirmeisen A. Limitations of structural superlubricity: Chemical bonds versus contact size. Acs Nano 11(8): 7642-7647 (2017)
[19]
Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17): 2320- 2325 (2012)
[20]
Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12(8): 754-759 (2013)
[21]
Yu Z G, Zhang Y W, Yakobson B I. An anomalous formation pathway for dislocation-sulfur vacancy complexes in polycrystalline monolayer MoS2. Nano Lett 15(10): 6855-6861 (2015)
[22]
Lu C P, Li G, Mao J, Wang L M, Andrei E Y. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett 14(8): 4628-4633 (2014)
[23]
Lin Z, Carvalho B R, Kahn E, Lv R T, Rao R, Terrones H, Pimenta M A, Terrones M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater 3(2): 022002 (2016)
[24]
Yazyev O V, Chen Y P. Polycrystalline graphene and other two-dimensional materials. Nature Nanotech 9(10): 755-767 (2014)
[25]
Chen S, Gao J F, Srinivasan B M, Zhang G, Yang M, Cha J W, Wang S J, Chi D Z, Zhang Y W. Revealing the grain boundary formation mechanism and kinetics during polycrystalline MoS2 growth. Acs Appl Mater Interfaces 11(49): 46090-46100 (2019)
[26]
Liu Z, Amani M, Najmaei S, Xu Q, Zou X L, Zhou W, Yu T, Qiu C Y, Birdwell A G, Crowne F J, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun 5: 5246 (2014)
[27]
Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13(6): 2615-2622 (2013)
[28]
van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12(6): 554-561 (2013)
[29]
Huang Y H, Yao Q Z, Lu Z X, Jiao L Y, Zhang S, Li Q Y, Meng Y G. Antiwear performance of monolayer MoS2 modulated by residual straining. Acs Appl Nano Mater 1(12): 7092-7097 (2018)
[30]
Kong N, Wei B Y, Zhuang Y, Zhang J, Li H B, Wang B. Effect of compressive prestrain on the anti-pressure and anti-wear performance of monolayer MoS2: a molecular dynamics study. Nanomaterials 10(2): 275 (2020)
[31]
Wang C Q, Li H S, Zhang Y S, Sun Q, Jia Y. Effect of strain on atomic-scale friction in layered MoS2. Tribol Int 77: 211-217 (2014)
[32]
Cao X A, Gan X H, Lang H J, Yu K, Ding S Y, Peng Y T, Yi W M. Anisotropic nanofriction on MoS2 with different thicknesses. Tribol Int 134: 308-316 (2019)
[33]
Onodera T, Morita Y, Nagumo R, Miura R, Suzuki A, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Dassenoy F, et al. A computational chemistry study on friction of h-MoS2 Part II friction anisotropy. J Phys Chem B 114(48): 15832-15838 (2009)
[34]
Sheehan P E, Lieber C M. Friction between van der Waals solids during lattice directed sliding. Nano Lett 17(7): 4116-4121 (2017)
[35]
Zhao X Y, Phillpot S R, Sawyer W G, Sinnott S B, Perry S S. Transition from thermal to athermal friction under cryogenic conditions. Phys Rev Lett 102(18): 186102 (2009)
[36]
Dang K Q, Spearot D E. Effect of point and grain boundary defects on the mechanical behavior of monolayer MoS2 under tension via atomistic simulations. J Appl Phys 116(1): 013508 (2014)
[37]
Wu J Y, Cao P Q, Zhang Z S, Ning F L, Zheng S S, He J Y, Zhang Z L. Grain-size-controlled mechanical properties of polycrystalline monolayer MoS2. Nano Lett 18(2): 1543-1552 (2018)
[38]
Li M, Wan Y, Tu L, Yang Y, Lou J. The effect of VMoS3 point defect on the elastic properties of monolayer MoS2 with REBO potentials. Nanoscale Res Lett 11(1): 155 (2016)
[39]
Ky D L C, Tran Khac B C, Le C T, Kim Y S, Chung K H. Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction 6(4): 395-406 (2018)
[40]
Lavini F, Calò A, Gao Y, Albisetti E, Li T D, Cao T, Li G, Cao L, Aruta C, Riedo E. Friction and work function oscillatory behavior for an even and odd number of layers in polycrystalline MoS2. Nanoscale 10(17): 8304-8312 (2018)
[41]
Zou X L, Liu Y Y, Yakobson B I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett 13(1): 253-258 (2013)
[42]
Dong Y, Li Q, Martini A. Molecular dynamics simulation of atomic friction: A review and guide.   J Vac Sci Technol A 31(3): 033108 (2013)
[43]
Sinnott S, Heo S J, Brenner D, Harrison J. Computer Simulations of Nanometer-Scale Indentation and Friction. In Nanotribology and Nanomechanics. Springer Berlin Heidelberg, 2007: 1051-1106.
[44]
Sun X L, Wang Z G, Fu Y Q. Defect-mediated lithium adsorption and diffusion on monolayer molybdenum disulfide. Sci Rep-UK 5: 18712 (2015)
[45]
Zhang J, Chen X, Xu Q, Ma T, Hu Y, Wang H, Tieu A K, Luo J. Effects of grain boundary on wear of graphene at the nanoscale: A molecular dynamics study. Carbon 143: 578-586 (2019)
[46]
Carlsson J M, Ghiringhelli L M, Fasolino A. Theory and hierarchical calculations of the structure and energetics of [0001] tilt grain boundaries in graphene. Phys Rev B 84(16): 165423 (2011)
[47]
Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys-Condens Mat 14(4): 783-802 (2002)
[48]
Liang T, Phillpot S R, Sinnott S B. Parametrization of a reactive many-body potential for Mo-S systems. Phys Rev B 79(24): 245110 (2009)
[49]
Xiong S, Cao G X. Molecular dynamics simulations of mechanical properties of monolayer MoS2. Nanotechnology 26(18): 185705 (2015)
[50]
Liu Y, Liu Y H, Ma T B, Luo J B. Atomic scale simulation on the anti-pressure and friction reduction mechanisms of MoS2 monolayer. Materials 11(5): 683 (2018)
[51]
Wang L, Duan F. Nanoscale wear mechanisms of few- layer graphene sheets induced by interfacial adhesion. Tribol Int 123: 266-272 (2018)
[52]
Xu Q, Li X, Zhang J, Hu Y, Wang H, Ma T. Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study. Acs Appl Mater Inter 9(46): 40959-40968 (2017)
[53]
Sandoz-Rosado E J, Tertuliano O A, Terrell E J. An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings. Carbon 50(11): 4078-4084 (2012)
[54]
Pena-Alvarez M, del Corro E, Morales-Garcia A, Kavan L, Kalbac M, Frank O. Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering. Nano Lett 15(5): 3139-3146 (2015)
[55]
Mo Y F, Turner K T, Szlufarska I. Friction laws at the nanoscale. Nature 457(7233): 1116-1119 (2009)
[56]
Liu T H, Gajewski G, Pao C W, Chang C C. Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations. Carbon 49(7): 2306-2317 (2011)
[57]
Zeng X Z, Peng Y T, Lang H J. A novel approach to decrease friction of graphene. Carbon 118: 233-240 (2017)
[58]
Yang J J, Liu L. Nanotribological properties of 2-D MoS2 on different substrates made by atomic layer deposition (ALD). Appl Surf Sci 502: 144402 (2020)
[59]
Kisin S, Vukic J B, van der Varst P G T, de With G, Koning C E. Estimating the polymer-metal work of adhesion from molecular dynamics simulations. Chem Mater 19(4): 903-907 (2007)
[60]
Zhao S J, Zhang Z H, Wu Z H, Liu K H, Zheng Q S, Ma M. The Impacts of Adhesion on the Wear Property of Graphene. Adv Mater Interfaces 6(18): 1900721(2019)
[61]
Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Sun J, Li J. The evolving quality of frictional contact with graphene. Nature 539(7630): 541-545 (2016)
File
40544_2020_459_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 June 2020
Revised: 26 August 2020
Accepted: 28 September 2020
Published: 20 November 2020
Issue date: October 2021

Copyright

© The author(s) 2020

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (Grant No. 51605026).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

Return