AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Nanofriction characteristics of h-BN with electric field induced electrostatic interaction

Kemeng YU1,2Kun ZOU1( )Haojie LANG1Yitian PENG1,2,3( )
Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Donghua University, Shanghai 201620, China
College of Mechanical Engineering, Donghua University, Shanghai 201620, China
Engineering Research Center of Advanced Textile Machinery, Donghua University, Shanghai 201620, China
Show Author Information

Abstract

The nanofriction properties of hexagonal boron nitride (h-BN) are vital for its application as a substrate for graphene devices and solid lubricants in micro- and nano-electromechanical devices. In this work, the nanofriction characteristics of h-BN on Si/SiO2 substrates with a bias voltage are explored using a conductive atomic force microscopy (AFM) tip sliding on the h-BN surface under different substrate bias voltages. The results show that the nanofriction on h-BN increases with an increase in the applied bias difference (Vt-s) between the conductive tip and the substrate. The nanofriction under negative Vt-s is larger than that under positive Vt-s. The variation in nanofriction is relevant to the electrostatic interaction caused by the charging effect. The electrostatic force between opposite charges localized on the conductive tip and at the SiO2/Si interface increases with an increase in Vt-s. Owing to the characteristics of p-type silicon, a positive Vt-s will first cause depletion of majority carriers, which results in a difference of nanofriction under positive and negative Vt-s. Our findings provide an approach for manipulating the nanofriction of 2D insulating material surfaces through an applied electric field, and are helpful for designing a substrate for graphene devices.

Electronic Supplementary Material

Download File(s)
40544_2020_432_MOESM1_ESM.pdf (2.6 MB)

References

[1]
Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P. Temperature-dependent transport in suspended graphene. Phys Rev Lett 101(9): 096802 (2008)
[2]
Du X, Skachko I, Barker A, Andrei E Y. Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8): 491–495(2008)
[3]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Rev Mod Phys 81(1): 109–162(2009)
[4]
Geim A K, Novoselov K S. The rise of graphene. Nanosci Technol 6(3): 183–191(2007)
[5]
Ando T. Screening effect and impurity scattering in monolayer graphene. J Phys Soc Jpn 75(7): 074716 (2006)
[6]
Nomura K, MacDonald A H. Quantum transport of massless Dirac fermions. Phys Rev Lett 98(7): 076602 (2007)
[7]
Hwang E H, Adam S, Das Sarma S. Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98(18): 186806 (2007)
[8]
Adam S, Hwang E H, Galitski V M, Das Sarma S. A self-consistent theory for graphene transport. Proc Natl Acad Sci USA 104(47): 18392–18397(2007)
[9]
Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4): 206–209(2008)
[10]
Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D. Atomic structure of graphene on SiO2. Nano Lett 7(6): 1643–1648(2007)
[11]
Katsnelson M I, Geim A K. Electron scattering on microscopic corrugations in graphene. Philos Trans A Math Phys Eng Sci 366(1863): 195–204(2008)
[12]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1): 016602 (2008)
[13]
Park J Y, Ogletree D F, Thiel P A, Salmeron M. Electronic control of friction in silicon pn junctions. Science 313(5784): 186 (2006)
[14]
Park J Y, Qi Y B, Ogletree D F, Thiel P A, Salmeron M. Influence of carrier density on the friction properties of silicon pn junctions. Phys Rev B 76(6): 064108 (2007)
[15]
Jiang Y, Yue L L, Yan B S, Liu X, Yang X F, Tai G A, Song J. Electric control of friction on silicon studied by atomic force microscope. Nano 10(3): 1550038 (2015)
[16]
Ponomarenko L A, Yang R, Mohiuddin T M, Katsnelson M I, Novoselov K S, Morozov S V, Zhukov A A, Schedin F, Hill E W, Geim A K. Effect of a high-κ environment on charge carrier mobility in graphene. Phys Rev Lett 102(20): 206603 (2009)
[17]
Liao L, Bai J W, Qu Y Q, Huang Y, Duan X F. Single-layer graphene on Al2O3/Si substrate: Better contrast and higher performance of graphene transistors. Nanotechnology 21(1): 015705 (2010)
[18]
Lafkioti M, Krauss B, Lohmann T, Zschieschang U, Klauk H, Klitzing K V, Smet J H. Graphene on a hydrophobic substrate: Doping reduction and hysteresis suppression under ambient conditions. Nano Lett 10(4): 1149–1153(2010)
[19]
Leob L B. The basic mechanisms of static electrification. Science 102(2658): 573–576(1945)
[20]
Diaz A F, Felix-Navarro R M. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J Electrostat 62(4): 277–290(2004)
[21]
Bart S F, Mehregany M, Tavrow L S, Lang J H, Senturia S D. Electric micromotor dynamics. IEEE Trans Electron Devices 39(3): 566–575(1992)
[22]
Beerschwinger U, Reuben R L, Yang S J. Frictional study of micromotor bearings. Sens Actuators A: Phys 63(3): 229–241(1997)
[23]
He F, Xie G X, Luo J B. Electrical bearing failures in electric vehicles. Friction 8(1): 4–28(2020)
[24]
Dayo A, Alnasrallah W, Krim J. Superconductivity-dependent sliding friction. Phys Rev Lett 80(8): 1690–1693(1998)
[25]
Kisiel M, Gnecco E, Gysin U, Marot L, Rast S, Meyer E. Suppression of electronic friction on Nb films in the superconducting state. Nat Mater 10(2): 119–122(2011)
[26]
Park J Y, Salmeron M. Fundamental aspects of energy dissipation in friction. Chem Rev 114(1): 677–711(2014)
[27]
Kim J H, Fu D Y, Kwon S, Liu K, Wu J Q, Park J Y. Crossing thermal lubricity and electronic effects in friction: Vanadium dioxide under the metal–insulator transition. Adv Mater Interfaces 3(2): 1500388 (2016)
[28]
Pease R S. Crystal structure of boron nitride. Nature 165(4201): 722–723(1950)
[29]
Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C C, Zhi C Y. Boron nitride nanotubes and nanosheets. ACS Nano 4(6): 2979–2993(2010)
[30]
Pacilé D, Meyer J C, Girit Ç Ö, Zettl A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92(13): 133107 (2008)
[31]
Golberg D, Bando Y, Tang C C, Zhi C Y. Boron nitride nanotubes. Adv Mater 19(18): 2413–2432(2007)
[32]
Paine R T, Narula C K. Synthetic routes to boron nitride. Chem Rev 90(1): 73–91(1990)
[33]
Chen Y, Zou J, Campbell S J, Le Caer G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl Phys Lett 84(13): 2430 (2004)
[34]
Kubota Y, Watanabe K, Tsuda O, Taniguchi T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840): 932–934(2007)
[35]
Watanabe K, Taniguchi T, Niiyama T, Miya K, Taniguchi M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat Photonics 3(10): 591–594(2009)
[36]
Lui C H, Liu L, Mak K F, Flynn G W, Heinz T F. Ultraflat graphene. Nature 462(7271): 339–341(2009)
[37]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10): 722–726(2010)
[38]
Qi Y B, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M. Electronic contribution to friction on GaAs: An atomic force microscope study. Phys Rev B 77(18): 184105 (2008)
[39]
He F, Yang X, Bian Z L, Xie G X, Guo D, Luo J B. In-plane potential gradient induces low frictional energy dissipation during the stick-slip sliding on the surfaces of 2D materials. Small 15(49): 1904613 (2019)
[40]
Fann W S, Storz R, Tom H W K, Bokor J. Electron thermalization in gold. Phys Rev B 46(20): 13592–13595(1992)
[41]
Novoselov K S, Castro Neto A H. Two-dimensional crystals-based heterostructures: Materials with tailored properties. Phys Scr T146: 014006 (2012)
[42]
Wagner K, Cheng P, Vezenov D. Noncontact method for calibration of lateral forces in scanning force microscopy. Langmuir 27(8): 4635–4644(2011)
[43]
Green C P, Lioe H, Cleveland J P, Proksch R, Mulvaney P, Sader J E. Normal and torsional spring constants of atomic force microscope cantilevers. Rev Sci Instrum 75(6): 1988–1996(2004)
[44]
Riedo E, Lévy F, Brune H. Kinetics of capillary condensation in nanoscopic sliding friction. Phys Rev Lett 88(18): 185505 (2002)
[45]
Popov V L. Contact Mechanics and Friction. Berlin, Heidelberg (Germany): Springer, 2010.
[46]
Carpick R W, Ogletree D F, Salmeron M. A general equation for fitting contact area and friction vs load measurements. J Colloid Interface Sci 211(2): 395–400(1999)
[47]
Falin A, Cai Q R, Santos E J G, Scullion D, Qian D, Zhang R, Yang Z, Huang S M, Watanabe K, Taniguchi T, et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun 8(1): 15815 (2017)
[48]
Tayebi N, Zhang Y G, Chen R J, Tran Q, Chen R, Nishi Y, Ma Q, Rao V. An ultraclean tip-wear reduction scheme for ultrahigh density scanning probe-based data storage. ACS Nano 4(10): 5713–5720(2010)
[49]
Cramer T, Zerbetto F, García R. Molecular mechanism of water bridge buildup: Field-induced formation of nanoscale menisci. Langmuir 24(12): 6116–6120(2008)
[50]
Gómez-Moñivas S, Sáenz J J, Calleja M, García R. Field-induced formation of nanometer-sized water bridges. Phys Rev Lett 91(5): 056101 (2003)
[51]
Kurtin S, McGill T C, Mead C A. Fundamental transition in the electronic nature of solids. Phys Rev Lett 22(26): 1433 (1969)
[52]
Lowell J, Rose-Innes A C. Contact electrification. Adv Phys 29(6): 947–1023(1980)
[53]
Wåhlin A, Bäckström G. Sliding electrification of Teflon by metals. J Appl Phys 45(5): 2058–2064(1974)
[54]
Arridge R G C. The static electrification of nylon 66. Br J Appl Phys 18(9): 1311–1316(1967)
[55]
Rozhok S, Sun P, Piner R, Lieberman M, Mirkin C A. AFM study of water meniscus formation between an AFM tip and NaCl substrate. J Phys Chem B 108(23): 7814–7819(2004)
Friction
Pages 1492-1503
Cite this article:
YU K, ZOU K, LANG H, et al. Nanofriction characteristics of h-BN with electric field induced electrostatic interaction. Friction, 2021, 9(6): 1492-1503. https://doi.org/10.1007/s40544-020-0432-x

719

Views

53

Downloads

12

Crossref

N/A

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 19 January 2020
Revised: 12 June 2020
Accepted: 11 July 2020
Published: 03 December 2020
© The author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return