AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Development and prospects of garnet ceramic scintillators: A review

Danyang ZHU1,2Martin NIKL3Weerapong CHEWPRADITKUL4Jiang LI1,2( )
Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Physics, The Czech Academy of Sciences, Prague 16200, Czech Republic
Department of Physics, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
Show Author Information

Graphical Abstract

Abstract

Garnet ceramic scintillators are a class of inorganic scintillation materials with excellent overall performance. The flexibility of cation substitution in different lattice positions leads to tunable and versatile properties and a wide range of applications. This paper starts with an overview of the development history of the inorganic scintillation materials, followed by a description of major preparation methods and characterization of garnet scintillation ceramics. Great progress obtained in recent years consisting in applying the band-gap and defect engineering strategies to the garnet scintillation ceramics is reviewed. Finally, the respective problems in the preparation and performance of multicomponent garnet single crystals and ceramics and the effective solutions are discussed. The garnet scintillation ceramics with the highest application potential are summarized, and the future development directions are proposed.

References

[1]
Lecoq P, Gektin A, Korzhik M. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering. Switzerland: Springer Cham, 2017.
DOI
[2]
Dujardin C, Auffray E, Bourret-Courchesne E, et al. Needs, trends, and advances in inorganic scintillators. IEEE Trans Nucl Sci 2018, 65: 1977–1997.
[3]
Leroy C, Rancoita PG. Principles of Radiation Interaction in Matter and Detection, 4th edn. Singapore: Word Scientific Pub Co Inc, 2016.
[4]
Mao RH, Zhang LY, Zhu RY. Optical and scintillation properties of inorganic scintillators in high energy physics. IEEE Trans Nucl Sci 2008, 55: 2425–2431.
[5]
Weber MJ. Inorganic scintillators: Today and tomorrow. J Lumin 2002, 100: 35–45.
[6]
Průša P, Kučera M, Babin V, et al. Garnet scintillators of superior timing characteristics: Material, engineering by liquid phase epitaxy. Adv Opt Mater 2017, 5: 1600875.
[7]
Ishii M, Kobayashi M. Single crystals for radiation detectors. Prog Cryst Growth Charact Mater 1992, 23: 245–311.
[8]
Nargelas S, Talochka Y, Vaitkevičius A, et al. Influence of matrix composition and its fluctuations on excitation relaxation and emission spectrum of Ce ions in (GdxY1−x)3Al2Ga3O12:Ce scintillators. J Lumin 2022, 242: 118590.
[9]
Greskovich C, Duclos S. Ceramic scintillators. Annu Rev Mater Sci 1997, 27: 69–88.
[10]
Han K, Sakhatskyi K, Jin J, et al. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators. Adv Mater 2022, 34: 2110420.
[11]
Havlíček J, Jakeš V, Rubešová K, et al. Heavily cerium-doped (Gd,La)AlO3 ceramic scintillators: Material optimization study. Ceram Int 2022, .
[12]
Bollinger LM, Thomas GE, Ginther RJ. Neutron detection with glass scintillators. Nucl Instrum Meth 1962, 17: 97–116.
[13]
Amelina A, Mikhlin A, Belus S, et al. (Gd,Ce)2O3–Al2O3–SiO2 scintillation glass. J Non Cryst Solids 2022, 580: 121393.
[14]
Martin T, Douissard PA, Couchaud M, et al. LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging. IEEE Trans Nucl Sci 2009, 56: 1412–1418.
[15]
Vasil’eva NV, Spassky D, Kurosawa S, et al. Study of optical and luminescent properties of the epitaxial garnet films doped with Ce3+. J Phys Conf Ser 2021, 2103: 012114.
[16]
Röntgen WC. On a new kind of rays. Science 1896, 3: 227–231.
[17]
Crookes W. The emanations of radium. Proc Roy Soc London 1903, 71: 405–408.
[18]
Rutherford E. LXXIX. The scattering of α and β particles by matter and the structure of the atom. Lond Edinb Dublin Philos Mag J Sci 1911, 21: 669–688.
[19]
Weber MJ. Scintillator materials for calorimetry. In: Proceedings of the 5th International Conference on Calorimetry in High Energy Physics, New York, 1994.
[20]
Hofstadter R. The detection of gamma-rays with thallium-activated sodium iodide crystals. Phys Rev 1949, 75: 796–810.
[21]
Van Sciver W, Hofstadter R. Scintillations in thallium-activated CaI2 and CsI. Phys Rev 1951, 84: 1062–1063.
[22]
Gillette RH. Calcium and cadmium tungstate as scintillation counter crystals for gamma-ray detection. Rev Sci Instrum 1950, 21: 294–301.
[23]
Murray RB. Use of Li6I(Eu) as a scintillation detector and spectrometer for fast neutrons. Nucl Instrum 1958, 2: 237–248.
[24]
Ginther RJ, Schulmian JH. Glass scintillators. IRE Trans Nucl Sci 1958, 5: 92–95.
[25]
Weber MJ, Monchamp RR. Luminescence of Bi4Ge3O12: Spectral and decay properties. J Appl Phys 1973, 44: 5495–5499.
[26]
Farukhi MR. Recent developments in scintillation detectors for X-ray CT and positron CT applications. IEEE Trans Nucl Sci 1982, 29: 1237–1249.
[27]
Nassalski A, Kapusta M, Batsch T, et al. Comparative study of scintillators for PET/CT detectors. In: Proceedings of the IEEE Nuclear Science Symposium Conference Record, 2005: 2823–2829.
[28]
Zhu RY. A very compact crystal shashlik electromagnetic calorimeter for future HEP experiments. J Phys Conf Ser 2017, 928: 012015.
[29]
David JK, William PN, Louis P. Precision linear and two-dimensional scintillation crystal arrays for X-ray and gamma-ray imaging applications. In: Proceedings of the SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Denver, USA, 1999: 183–194.
[30]
Derenzo SE, Moses WW. Experimental efforts and results in finding new heavy scintillators. In: Proceedings of the Crystal 2000 International Workshop on Heavy Scintillators for Scientific and Industrial Applications, Chamonix, France, 1992.
[31]
Sreebunpeng K, Chewpraditkul W, Chewpraditkul W, et al. Optical, luminescence and scintillation properties of Mg2+-codoped (Lu,Y)3Al2Ga3O12:Pr garnet crystals: The effect of Y admixture. Radiat Phys Chem 2022, 201: 110400.
[32]
Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator. IEEE Trans Nucl Sci 1992, 39: 502–505.
[33]
Wanarak C, Chewpraditkul W, Phunpueok A, et al. Luminescence and scintillation properties of Ce-doped LYSO and YSO crystals. Adv Mater Res 2011, 199–200: 1796–1803.
[34]
Kimble T, Chou M, Chai BHT. Scintillation properties of LYSO crystals. In: Proceedings of the 2002 IEEE Nuclear Science Symposium Conference Record, Norfolk, USA, 2002: 1434–1437.
[35]
Zorenko Y, Gorbenko V, Konstankevych I, et al. Scintillation properties of Lu3Al5O12:Ce single-crystalline films. Nucl Instrum Meth A 2002, 486: 309–314.
[36]
Nikl M, Ogino H, Krasnikov A, et al. Photo- and radioluminescence of Pr-doped Lu3Al5O12 single crystal. Phys Status Solidi A 2005, 202: R4–R6.
[37]
Nikl M, Mihoková E, Mareš JA, et al. Traps and timing characteristics of LuAG:Ce3+ scintillator. Phys Status Solidi A 2000, 181: R10R12.10.1002/1521-396X(200009)181:13.0.CO;2-9
DOI
[38]
Autrata R, Schauer P, Kuapil J. A single crystal of YAG-new fast scintillator in SEM. J Phys E Sci Instrum 1978, 11: 707–708.
[39]
Shi Y, Nikl M, Feng XQ, et al. Microstructure, optical, and scintillation characteristics of Pr3+ doped Lu3Al5O12 optical ceramics. J Appl Phys 2011, 109: 013522.
[40]
Chewpraditkul W, Sreebunpeng K, Nikl M, et al. Comparison of Lu3Al5O12:Pr3+ and Bi4Ge3O12 scintillators for gamma-ray detection. Radiat Meas 2012, 47: 1–5.
[41]
Sreebunpeng K, Chewpraditkul W, Babin V, et al. Scintillation response of Y3Al5O12:Pr3+ single crystal scintillators. Radiat Meas 2013, 56: 94–97.
[42]
Autrata R, Schauer P, Kvapil J, et al. A single crystal of YAlO3:Ce3+ as a fast scintillator in SEM. Scanning 1983, 5: 91–96.
[43]
Moszyński M, Wolski D, Ludziejewski T, et al. Properties of the new LuAP:Ce scintillator. Nucl Instrum Meth A 1997, 385: 123–131.
[44]
Nikl M, Yoshikawa A, Vedda A, et al. Development of novel scintillator crystals. J Cryst Growth 2006, 292: 416–421.
[45]
Sreebunpeng K, Janthon P, Chewpraditkul W, et al. Scintillation characteristics of YAlO3:Pr perovskite single crystals. Opt Mater 2020, 108: 110161.
[46]
Phunpueok A, Chewpraditkul W, Limsuwan P, et al. Luminescence and scintillation properties of Ce-doped YAP and LuYAP crystals. Adv Mater Res 2011, 199–200: 1789–1795.
[47]
Kucera M, Rathaiah M, Nikl M, et al. Scintillation properties of YAlO3:Ce perovskite co-doped by Mg2+ ions. Opt Mater 2022, 132: 112779.
[48]
Pokorný M, Babin V, Beitlerová A, et al. Gd-admixed (Lu,Gd)AlO3 single crystals: Breakthrough in heavy perovskite scintillators. NPG Asia Mater 2021, 13: 66.
[49]
Van Loef EVD, Dorenbos P, van Eijk CWE, et al. High-energy-resolution scintillator: Ce3+ activated LaCl3. Appl Phys Lett 2000, 77: 1467–1468.
[50]
Van Loef EVD, Dorenbos P, van Eijk CWE, et al. High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl Phys Lett 2001, 79: 1573–1575.
[51]
Pepin CM, Berard P, Perrot AL, et al. Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans Nucl Sci 2004, 51: 789–795.
[52]
Laval M, Moszyński M, Allemand R, et al. Barium fluoride—Inorganic scintillator for subnanosecond timing. Nucl Instrum Meth Phys Res 1983, 206: 169–176.
[53]
Hu C, Zhang LY, Zhu RY, et al. Ultrafast inorganic scintillators for gigahertz hard X-ray imaging. IEEE Trans Nucl Sci 2018, 65: 2097–2104.
[54]
Hu C, Zhang LY, Zhu RY, et al. Ultrafast inorganic scintillator-based front imager for gigahertz hard X-ray imaging. Nucl Instrum Meth A 2019, 940: 223–229.
[55]
Hu C, Zhang LY, Zhu RY, et al. BaF2:Y and ZnO:Ga crystal scintillators for GHz hard X-ray imaging. Nucl Instrum Meth A 2020, 950: 162767.
[56]
Pawley JB. Performance of SEM scintillation materials. In: Proceedings of the Scanning Electron Microscopy, Chicago, USA, 1974: 27–34.
[57]
Moszyński M, Ludziejewski T, Wolski D, et al. Properties of the YAG:Ce scintillator. Nucl Instrum Meth A 1994, 345: 461–467.
[58]
Zych E, Brecher C, Wojtowicz AJ, et al. Luminescence properties of Ce-activated YAG optical ceramic scintillator materials. J Lumin 1997, 75: 193–203.
[59]
Yanagida T, Takahashi H, Ito T, et al. Evaluation of properties of YAG (Ce) ceramic scintillators. IEEE Trans Nucl Sci 2005, 52: 1836–1841.
[60]
Ludziejewski T, Moszyński M, Kapusta M, et al. Investigation of some scintillation properties of YAG:Ce crystals. Nucl Instrum Meth A 1997, 398: 287–294.
[61]
Zych E, Brecher C, Lingertat H. Depletion of high-energy carriers in YAG optical ceramic materials. Spectrochim Acta A 1998, 54: 1771–1777.
[62]
Wang XB, Dai Y, Zhang ZH, et al. Optical and scintillation properties of Ce:Y3Al5O12 single crystal fibers grown by laser heated pedestal growth method. J Rare Earths 2021, 39: 1533–1539.
[63]
Takahashi H, Yanagida T, Kasama D, et al. The temperature dependence of gamma-ray responses of YAG:Ce ceramic scintillators. IEEE Trans Nucl Sci 2006, 53: 2404–2408.
[64]
Zych E, Brecher C. Temperature dependence of Ce-emission kinetics in YAG:Ce optical ceramic. J Alloys Compd 2000, 300–301: 495–499.
[65]
Mares JA, Beitlerova A, Nikl M, et al. Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1 MeV. Radiat Meas 2004, 38: 353–357.
[66]
Vedda A, Martini M, di Martini D, et al. Defect states in Lu3Al5O12:Ce crystals. Radiat Eff Defect S 2002, 157: 1003–1007.
[67]
Ogino H, Yoshikawa A, Nikl M, et al. Scintillation characteristics of Pr-doped Lu3Al5O12 single crystals. J Cryst Growth 2006, 292: 239–242.
[68]
Swiderski L, Moszynski M, Nassalski A, et al. Scintillation properties of praseodymium doped LuAG scintillator compared to cerium doped LuAG, LSO and LaBr3. IEEE Trans Nucl Sci 2009, 56: 2499–2505.
[69]
Chewpraditkul W, Moszynski M. Scintillation properties of Lu3Al5O12, Lu2SiO5 and LaBr3 crystals activated with cerium. Phys Procedia 2011, 22: 218–226.
[70]
Li HL, Liu XJ, Huang LP. Fabrication of transparent cerium-doped lutetium aluminum garnet (LuAG:Ce) ceramics by a solid-state reaction method. J Am Ceram Soc 2005, 88: 3226–3228.
[71]
Li HL, Liu XJ, Huang LP. Fabrication of transparent Ce:LuAG ceramics by a solid-state reaction method. J Inorg Mater 2006, 21: 1161–1166. (in Chinese)
[72]
Li HL, Liu XJ, Xie RJ, et al. Fabrication of transparent cerium-doped lutetium aluminum garnet ceramics by co-precipitation routes. J Am Ceram Soc 2006, 89: 2356–2358.
[73]
Li HL, Liu XJ, Xie RJ, et al. Cerium-doped lutetium aluminum garnet phosphors and optically transparent ceramics prepared from powder precursors by a urea homogeneous precipitation method. Jpn J Appl Phys 2008, 47: 1657–1661.
[74]
Xu J, Fan LC, Shi Y, et al. Scintillation and luminescent properties of cerium doped lutetium aluminum garnet (Ce:LuAG) powders and transparent ceramics. IEEE Trans Nucl Sci 2014, 61: 373–379.
[75]
Belogurov S, Bressi G, Carugno G, et al. Properties of Yb-doped scintillators: YAG, YAP, LuAG. Nucl Instrum Meth A 2004, 516: 58–67.
[76]
Yoshikawa A, Ogino H, Lee JH, et al. Growth and optical properties of Yb doped new scintillator crystals. Opt Mater 2003, 24: 275–279.
[77]
Nikl M, Pejchal J, Mihokova E, et al. Antisite defect-free Lu3(GaxAl1−x)5O12:Pr scintillator. Appl Phys Lett 2006, 88: 141916.
[78]
Yanagida T, Itoh T, Takahashi H, et al. Improvement of ceramic YAG(Ce) scintillators to (YGd)3Al5O12(Ce) for gamma-ray detectors. Nucl Instrum Meth A 2007, 579: 23–26.
[79]
Cherepy NJ, Payne SA, Asztalos SJ, et al. Scintillators with potential to supersede lanthanum bromide. IEEE Trans Nucl Sci 2009, 56: 873–880.
[80]
Cherepy NJ, Kuntz JD, Roberts JJ, et al. Transparent ceramic scintillator fabrication, properties, and applications. In: Proceedings of the SPIE 7079, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X, San Diego, USA, 2008: 70790X.
DOI
[81]
Kamada K, Yanagida T, Endo T, et al. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J Cryst Growth 2012, 352: 88–90.
[82]
Iwanowska J, Swiderski L, Szczesniak T, et al. Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl Instrum Meth A 2013, 712: 34–40.
[83]
Sakthong O, Chewpraditkul W, Wanarak C, et al. Luminescence and scintillation characteristics of Gd3Al2Ga3O12:Ce3+ scintillators. Opt Mater 2013, 36: 568–571.
[84]
Sakthong O, Chewpraditkul W, Wanarak C, et al. Scintillation properties of Gd3Al2Ga3O12:Ce3+ single crystal scintillators. Nucl Instrum Meth A 2014, 751: 1–5.
[85]
Yoshikawa A, Kamada K, Kurosawa S, et al. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La–GPS. J Lumin 2016, 169: 387–393.
[86]
Drury OB, Cherepy NJ, Hurst TA, et al. Garnet scintillator-based devices for gamma-ray spectroscopy. In: Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record, Orlando, USA, 2009: 1585–1587.
DOI
[87]
Cherepy NJ, Payne SA, Sturm BW, et al. Comparative gamma spectroscopy with SrI2(Eu), GYGAG(Ce) and Bi-loaded plastic scintillators. In: Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, USA, 2010: 1288–1291.
DOI
[88]
Cherepy NJ, Kuntz JD, Seeley ZM, et al. Transparent ceramic scintillators for gamma spectroscopy and radiography. In: Proceedings of the SPIE 7805, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XII, San Diego, USA, 2010: 78050I.
DOI
[89]
Cherepy NJ, Seeley ZM, Payne SA, et al. Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Trans Nucl Sci 2013, 60: 2330–2335.
[90]
Zhang JY, Luo ZH, Liu YF, et al. Cation-substitution induced stable GGAG:Ce3+ ceramics with improved optical and scintillation properties. J Eur Ceram Soc 2017, 37: 4925–4930.
[91]
Kamada K, Prusa P, Nikl M, et al. 2-inch size crystal growth of Ce:Gd3Al2Ga3O12 with various Ce concentration and their scintillation properties. In: Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Anaheim, USA, 2012: 1698–1701.
[92]
Drozdowski W, Lukasiewicz T, Wojtowicz AJ, et al. Thermoluminescence and scintillation of praseodymium-activated Y3Al5O12 and LuAlO3 crystals. J Cryst Growth 2005, 275: e709–e714.
[93]
Nikl M, Yoshikawa A, Kamada K, et al. Development of LuAG-based scintillator crystals—A review. Prog Cryst Growth Charact Mater 2013, 59: 47–72.
[94]
Kochurikhin V, Kamada K, Jin Kim K, et al. Czochralski growth of 4-inch diameter Ce:Gd3Al2Ga3O12 single crystals for scintillator applications. J Cryst Growth 2020, 531: 125384.
[95]
Ogino H, Yoshikawa A, Nikl M, et al. Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals. J Cryst Growth 2006, 287: 335–338.
[96]
Kamada K, Tsutsumi K, Usuki Y, et al. Crystal growth and scintillation properties of 2-inch-diameter Pr:Lu3Al5O12 (Pr:LuAG) single crystal. IEEE Trans Nucl Sci 2008, 55: 1488–1491.
[97]
Kamada K, Endo T, Tsutumi K, et al. Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators. Cryst Growth Des 2011, 11: 4484–4490.
[98]
Kamada K, Yanagida T, Pejchal J, et al. Crystal growth and scintillation properties of Ce doped Gd3(Ga,Al)5O12 single crystals. IEEE Trans Nucl Sci 2012, 59: 2112–2115.
[99]
Penner S, Klötzer B, Jenewein B, et al. Growth and stability of Ga2O3 nanospheres. Thin Solid Films 2008, 516: 4742–4749.
[100]
Kamada K, Kurosawa S, Prusa P, et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt Mater 2014, 36: 1942–1945.
[101]
Xiao ZH, Yu SJ, Li YM, et al. Materials development and potential applications of transparent ceramics: A review. Mater Sci Eng R Rep 2020, 139: 100518.
[102]
Zhou TY, Hou C, Zhang L, et al. Efficient spectral regulation in Ce:Lu3(Al,Cr)5O12 and Ce:Lu3(Al,Cr)5O12/ Ce:Y3Al5O12 transparent ceramics with high color rendering index for high-power white LEDs/LDs. J Adv Ceram 2021, 10: 1107–1118.
[103]
Zhu DY, Qian K, Chen XP, et al. Fine-grained Ce,Y:SrHfO3 scintillation ceramics fabricated by hot isostatic pressing. J Inorg Mater 2021, 36: 1118–1124.
[104]
Zhang LX, Li XY, Hu DJ, et al. Fabrication and properties of non-stoichiometric Tb2(Hf1−xTbx)2O7−x magneto-optical ceramics. J Adv Ceram 2022, 11: 784–793.
[105]
Park C, Ullah MN, Kim C, et al. Investigation of optical properties of ceramic Ce:GAGG by high temperature annealing. J Korean Phys Soc 2019, 75: 962–967.
[106]
Yanagida T, Fujimoto Y, Yokota Y, et al. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators. Radiat Meas 2011, 46: 1503–1505.
[107]
Yanagida T, Fujimoto Y, Kamada K, et al. Scintillation properties of transparent ceramic Pr:LuAG for different Pr concentration. IEEE Trans Nucl Sci 2012, 59: 2146–2151.
[108]
Yanagida T, Kamada K, Fujimoto Y, et al. Comparative study of ceramic and single crystal Ce: GAGG scintillator. Opt Mater 2013, 35: 2480–2485.
[109]
Nikl M, Mares JA, Solovieva N, et al. Scintillation characteristics of Lu3Al5O12:Ce optical ceramics. J Appl Phys 2007, 101: 033515.
[110]
Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc 1995, 78: 1033–1040.
[111]
Wu YH, Sun ZC, Feng GQ, et al. Preparation and properties of novel Tb3Sc2Al3O12 (TSAG) magneto-optical transparent ceramic. J Eur Ceram Soc 2021, 41: 195–201.
[112]
Zhang XR, Yang GY, Chi RT, et al. Preparation of YAG nanopowders and ceramics via coprecipitation: Effects of treatment modes of precipitates. Int J Appl Ceram Tec 2022, 19: 2419–2426.
[113]
Ji T, Wang T, Li H, et al. Ce3+-doped yttrium aluminum garnet transparent ceramics for high-resolution X-ray imaging. Adv Opt Mater 2022, 10: 2102056.
[114]
Shi Y, Shichalin O, Xiong YF, et al. Ce3+ doped Lu3Al5O12 ceramics prepared by spark plasma sintering technology using micrometre powders: Microstructure, luminescence, and scintillation properties. J Eur Ceram Soc 2022, 42: 6663–6670.
[115]
Zhou D, Qi HB, Zhou B, et al. Mixed precipitants derived nanocrystalline powders and RE doped LuAG transparent ceramics. Ceram Int 2022, 48: 24788–24792.
[116]
Yang SH, Sun Y, Chen XQ, et al. The effects of cation concentration in the salt solution on the cerium doped gadolinium gallium aluminum oxide nanopowders prepared by a co-precipitation method. IEEE Trans Nucl Sci 2014, 61: 301–305.
[117]
Sun Y, Yang SH, Zhang Y, et al. Co-precipitation synthesis of gadolinium aluminum gallium oxide (GAGG) via different precipitants. IEEE Trans Nucl Sci 2014, 61: 306–311.
[118]
Luo ZH, Liu YF, Zhang CH, et al. Effect of Yb3+ on the crystal structural modification and photoluminescence properties of GGAG:Ce3+. Inorg Chem 2016, 55: 3040–3046.
[119]
Luo ZH, Jiang HC, Jiang J, et al. Microstructure and optical characteristics of Ce:Gd3(Ga,Al)5O12 ceramic for scintillator application. Ceram Int 2015, 41: 873–876.
[120]
Luo ZH, Jiang HC, Jiang J. Synthesis of cerium-doped Gd3(Al,Ga)5O12 powder for ceramic scintillators with ultrasonic-assisted chemical coprecipitation method. J Am Ceram Soc 2013, 96: 3038–3041.
[121]
Tian F, Chen C, Liu Y, et al. Fabrication of Nd:YAG transparent ceramics from co-precipitated powders by vacuum pre-sintering and HIP post-treatment. Opt Mater 2020, 101: 109728.
[122]
Zhang LX, Li XY, Hu DJ, et al. Fabrication and properties of transparent Tb2Ti2O7 magneto-optical ceramics. J Eur Ceram Soc 2021, 41: 7208–7214.
[123]
Chen XP, Liu X, Feng YG, et al. Microstructure evolution in two-step-sintering process toward transparent Ce:(Y,Gd)3(Ga,Al)5O12 scintillation ceramics. J Alloys Compd 2020, 846: 156377.
[124]
Bickmore CR, Waldner KF, Treadwell DR, et al. Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide. J Am Ceram Soc 1996, 79: 1419–1423.
[125]
Mädler L, Kammler HK, Mueller R, et al. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 2002, 33: 369–389.
[126]
Pratsinis SE. Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 1998, 24: 197–219.
[127]
Kuntz JD, Roberts JJ, Hough M, et al. Multiple synthesis routes to transparent ceramic lutetium aluminum garnet. Scripta Mater 2007, 57: 960–963.
[128]
Seeley ZM, Cherepy NJ, Payne SA. Expanded phase stability of Gd-based garnet transparent ceramic scintillators. J Mater Res 2014, 29: 2332–2337.
[129]
Cherepy NJ, Seeley ZM, Payne SA, et al. High energy resolution with transparent ceramic garnet scintillators. In: Proceedings of the SPIE 9213, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, San Diego, USA, 2014: 921302.
DOI
[130]
Seeley ZM, Cherepy NJ, Payne SA. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J Cryst Growth 2013, 379: 79–83.
[131]
Chen XQ, Qin HM, Zhang Y, et al. Effects of Ga substitution for Al on the fabrication and optical properties of transparent Ce:GAGG-based ceramics. J Eur Ceram Soc 2017, 37: 4109–4114.
[132]
Ye Y, Liu P, Yan DY, et al. Fabrication of Ce3+ doped Gd3Ga3Al2O12 ceramics by reactive sintering method. Opt Mater 2017, 71: 23–26.
[133]
Chen XQ, Qin HM, Wang XJ, et al. Sintering and characterisation of Gd3Al3Ga2O12/Y3Al5O12 layered composite scintillation ceramic. J Eur Ceram Soc 2016, 36: 2587–2591.
[134]
Hostaša J, Cova F, Piancastelli A, et al. Fabrication and luminescence of Ce-doped GGAG transparent ceramics, effect of sintering parameters and additives. Ceram Int 2019, 45: 23283–23288.
[135]
Chen XQ, Qin HM, Zhang Y, et al. Highly transparent ZrO2-doped (Ce,Gd)3Al3Ga2O12 ceramics prepared via oxygen sintering. J Eur Ceram Soc 2015, 35: 3879–3883.
[136]
Hu C, Liu SP, Shi Y, et al. Antisite defects in nonstoichiometric Lu3Al5O12:Ce ceramic scintillators. Phys Status Solidi B 2015, 252: 1993–1999.
[137]
Scholle K, Heumann E, Huber G. Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications. Laser Phys Lett 2004, 1: 285–290.
[138]
Liu Q, Wang WL, Dai ZF, et al. Fabrication and long persistent luminescence of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramics. J Rare Earths 2022, .
[139]
Markovskyi A, Gieszczyk W, Bilski P, et al. Composition engineering of Tb3−xGdxAl5−yGayO12:Ce single crystals and their luminescent, scintillation and photoconversion properties. J Alloys Compd 2020, 849: 155808.
[140]
Di JQ, Xu XD, Li DZ, et al. CW laser properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG mixed crystals. Laser Phys 2011, 21: 1742–1744.
[141]
Chen XP, Hu ZW, Feng YG, et al. Electronic band modification for faster and brighter Ce,Mg:Lu3−xYxAl5O12 ceramic scintillators. J Lumin 2019, 214: 116545.
[142]
Chen XP, Hu ZW, Dai JW, et al. Fabrication and optical properties of cerium doped Lu3Ga3Al2O12 scintillation ceramics. Opt Mater 2018, 85: 121–126.
[143]
Babin V, Kink M, Maksimov Y, et al. Luminescence of undoped and Ce3+-doped Lu(Sc,Y)AG crystals. J Lumin 2007, 122–123: 332–334.
[144]
Chewpraditkul W, Pattanaboonmee N, Chewpraditkul W, et al. Luminescence and scintillation properties of Gd3Sc2(Al3−xGax)O12:Ce (x = 1, 2, 3) garnet crystals. Radiat Phys Chem 2021, 187: 109559.
[145]
Yadav SK, Uberuaga BP, Nikl M, et al. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles. Phys Rev Appl 2015, 4: 054012.
[146]
Dorenbos P. Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE = Gd, Y, Lu) garnet compounds. J Lumin 2013, 134: 310–318.
[147]
Ogino H, Yoshikawa A, Nikl M, et al. Suppression of defect related host luminescence in LuAG single crystals. Phys Procedia 2009, 2: 191–205.
[148]
Fasoli M, Vedda A, Nikl M, et al. Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping. Phys Rev B 2011, 84: 081102.
[149]
Ogino H, Yoshikawa A, Nikl M, et al. Growth and luminescence properties of Pr-doped Lu3(Ga,Al)5O12 single crystals. Jpn J Appl Phys 2007, 46: 3514–3517.
[150]
Babin V, Nikl M, Kamada K, et al. Effect of the Pr3+ → Gd3+ energy transfer in multicomponent garnet single crystal scintillators. J Phys D Appl Phys 2013, 46: 365303.
[151]
Wu YT, Ren GH. Energy transfer and radiative recombination processes in (Gd,Lu)3Ga3Al2O12:Pr3+ scintillators. Opt Mater 2013, 35: 2146–2154.
[152]
Kučera M, Nikl M, Hanuš M, et al. Gd3+ to Ce3+ energy transfer in multi-component GdLuAG and GdYAG garnet scintillators. Phys Status Solidi-R 2013, 7: 571–574.
[153]
Auffray E, Augulis R, Fedorov A, et al. Excitation transfer engineering in Ce-doped oxide crystalline scintillators by codoping with alkali-earth ions. Phys Status Solidi A 2018, 215: 1700798.
[154]
Hu C, Liu SP, Fasoli M, et al. O centers in LuAG:Ce,Mg ceramics. Phys Status Solidi-R 2015, 9: 245–249.
[155]
Chewpraditkul W, Pattanaboonmee N, Sakthong O, et al. Scintillation properties of Gd3Al2Ga3O12:Ce,Li and Gd3Al2Ga3O12:Ce, Mg single crystal scintillators: A comparative study. Opt Mater 2019, 92: 181–186.
[156]
Sakthong O, Chewpraditkul W, Chewpraditkul W, et al. Luminescence and scintillation properties of Mo co-doped Y0.8Gd2.2(Al5−xGax)O12:Ce multicomponent garnet crystals. Opt Mater 2021, 122: 111783.
[157]
Nikl M, Kamada K, Babin V, et al. Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Cryst Growth Des 2014, 14: 4827–4833.
[158]
Nikl M, Babin V, Pejchal J, et al. The stable Ce4+ center: A new tool to optimize Ce-doped oxide scintillators. IEEE Trans Nucl Sci 2016, 63: 433–438.
[159]
Liu SP, Feng XQ, Zhou ZW, et al. Effect of Mg2+ co-doping on the scintillation performance of LuAG: Ce ceramics. Phys Status Solidi-R 2014, 8: 105–109.
[160]
Liu SP, Mares JA, Feng XQ, et al. Towards bright and fast Lu3Al5O12:Ce,Mg optical ceramics scintillators. Adv Opt Mater 2016, 4: 731–739.
[161]
Dantelle G, Boulon G, Guyot Y, et al. Research on efficient fast scintillators: Evidence and X-ray absorption near edge spectroscopy characterization of Ce4+ in Ce3+, Mg2+-co-doped Gd3Al2Ga3O12 garnet crystal. Phys Status Solidi B 2020, 257: 1900510.
[162]
Shannon RD, Shannon RC, Medenbach O, et al. Refractive index and dispersion of fluorides and oxides. J Phys Chem Ref Data 2002, 31: 931–970.
[163]
Mihóková E, Nikl M, Mareš JA, et al. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics. J Lumin 2007, 126: 77–80.
[164]
Chen SL, Jiang BX, Wang Y, et al. Fabrication of Ce-doped (Gd2Y)Al5O12/Y3Al5O12 composite-phase scintillation ceramic. J Rare Earths 2019, 37: 978–983.
[165]
Yanagida T, Fujimoto Y, Yokota Y, et al. Scintillation properties of LuAG (Ce) ceramic and single crystalline scintillator. In: Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, USA, 2010: 1612–1614.
DOI
[166]
Hu C, Li J, Jiang BX, et al. Neutron and proton-induced radiation damage in LuAG scintillating ceramics. In: Proceedings of the 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, Boston, USA, 2020: 1–2.
DOI
[167]
Hu C, Zhang LY, Zhu RY, et al. Hadron-induced radiation damage in LuAG:Ce scintillating ceramics. IEEE Trans Nucl Sci 2022, 69: 181–186.
[168]
Liu SP, Feng XQ, Shi Y, et al. Fabrication, microstructure and properties of highly transparent Ce3+:Lu3Al5O12 scintillator ceramics. Opt Mater 2014, 36: 1973–1977.
[169]
Hull G, Roberts JJ, Kuntz JD, et al. Ce-doped single crystal and ceramic garnet for γ-ray detection. In: Proceedings of the SPIE 6706, Hard X-Ray and Gamma-Ray Detector Physics IX, San Diego, USA, 2007: 670617.
DOI
[170]
Hu C, Liu SP, Fasoli M, et al. ESR and TSL study of hole and electron traps in LuAG:Ce,Mg ceramic scintillator. Opt Mater 2015, 45: 252–257.
[171]
Wojtowicz AJ, Lempicki A, Wisniewski D, et al. The carrier capture and recombination processes in Ln3+-activated scintillators. IEEE Trans Nucl Sci 1996, 43: 2168–2173.
[172]
Chen XP, Hu ZW, Dai JW, et al. The influence of air annealing on the microstructure and scintillation properties of Ce,Mg:LuAG ceramics. J Am Ceram Soc 2019, 102: 1805–1813.
[173]
Chen XP, Hu ZW, Cao MQ, et al. Influence of cerium doping concentration on the optical properties of Ce,Mg:LuAG scintillation ceramics. J Eur Ceram Soc 2018, 38: 3246–3254.
[174]
Shi Y, Zhao Y, Cao MQ, et al. Dense Ce3+ doped Lu3Al5O12 ceramic scintillators with low sintering adds: Doping content effect, luminescence characterization and proton irradiation hardness. J Lumin 2020, 225: 117336.
[175]
Hu C, Liu SP, Feng ZD, et al. Flat panel X-ray imaging of LuAG:Ce,Mg ceramic scintillators. J Inorg Mater 2015, 30: 814–818. (in Chinese)
[176]
Ma WQ, Jiang BX, Feng XQ, et al. On fast LuAG:Ce scintillation ceramics with Ca2+ co-dopants. J Am Ceram Soc 2021, 104: 966–973.
[177]
Ma WQ, Jiang BX, Chen SL, et al. A fast lutetium aluminum garnet scintillation ceramic with Ce3+ and Ca2+ co-dopants. J Lumin 2019, 216: 116728.
[178]
Hu C, Li J, Yang F, et al. LuAG ceramic scintillators for future HEP experiments. Nucl Instrum Meth A 2020, 954: 161723.
[179]
Zhu DY, Chen XP, Beitlerova A, et al. Influence of calcium doping concentration on the performance of Ce,Ca:LuAG scintillation ceramics. J Eur Ceram Soc 2022, 42: 6075–6084.
[180]
Liu SP, Feng XQ, Mares JA, et al. Effect of Li+ ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG:Ce ceramics. Opt Mater 2017, 64: 245–249.
[181]
Liu SP, Feng XQ, Nikl M, et al. Fabrication and scintillation performance of nonstoichiometric LuAG:Ce ceramics. J Am Ceram Soc 2015, 98: 510–514.
[182]
Liu SP, Feng XQ, Mares JA, et al. Optical, luminescence and scintillation characteristics of non-stoichiometric LuAG:Ce ceramics. J Lumin 2016, 169: 72–77.
[183]
Hu ZW, Chen XP, Dai JW, et al. The influences of stoichiometry on the sintering behavior, optical and scintillation properties of Pr:LuAG ceramics. J Eur Ceram Soc 2018, 38: 4252–4259.
[184]
Liu SP, Mares JA, Babin V, et al. Effect of reducing Lu3+ content on the fabrication and scintillation properties of non-stoichiometric Lu3−xAl5O12:Ce ceramics. Opt Mater 2017, 63: 179–184.
[185]
Pejchal J, Nikl M, Mihóková E, et al. Pr3+-doped complex oxide single crystal scintillators. J Phys D Appl Phys 2009, 42: 055117.
[186]
Yanagida T, Yoshikawa A, Yokota Y, et al. Development of Pr:LuAG scintillator array and assembly for positron emission mammography. IEEE Trans Nucl Sci 2010, 57: 1492–1495.
[187]
Zhao JB, Wang ZF, Wang CN, et al. Synthesis and luminescent properties of Pr-doped Lu3Al5O12 translucent ceramic. J Rare Earths 2009, 27: 376–380.
[188]
Yanagida T, Fukabori A, Fujimoto Y, et al. Scintillation properties of transparent Lu3Al5O12 (LuAG) ceramics doped with different concentrations of Pr3+. Phys Status Solidi C 2011, 8: 140–143.
[189]
Yanagida T, Yoshikawa A, Ikesue A, et al. Basic properties of ceramic Pr:LuAG scintillators. IEEE Trans Nucl Sci 2009, 56: 2955–2959.
[190]
Shen YQ, Shi Y, Feng XQ, et al. The harmful effects of sintering aids in Pr:LuAG optical ceramic scintillator. J Am Ceram Soc 2012, 95: 2130–2132.
[191]
Hu ZW, Chen XP, Liu X, et al. Trace SiO2 addition on optical and scintillation property of Pr:Lu3Al5O12 ceramics. J Inorg Mater 2020, 35: 796–802. (in Chinese)
[192]
Shen YQ, Feng XQ, Babin V, et al. Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc,La-based isovalent sintering aids. Ceram Int 2013, 39: 5985–5990.
[193]
Shen YQ, Feng XQ, Shi Y, et al. The radiation hardness of Pr:LuAG scintillating ceramics. Ceram Int 2014, 40: 3715–3719.
[194]
Hu ZW, Chen XP, Chen HH, et al. Suppression of the slow scintillation component of Pr:Lu3Al5O12 transparent ceramics by increasing Pr concentration. J Lumin 2019, 210: 14–20.
[195]
Shen YQ, Shi Y, Pan YB, et al. Fabrication and 2D-mapping of Pr:Lu3Al5O12 scintillator ceramics with high light yield and fast decay time. J Inorg Mater 2014, 29: 534–538. (in Chinese)
[196]
Hu ZW, Cao MQ, Chen HH, et al. The role of air annealing on the optical and scintillation properties of Mg co-doped Pr:LuAG transparent ceramics. Opt Mater 2017, 72: 201–207.
[197]
Hu ZW, Chen XP, Liu X, et al. Fabrication and scintillation properties of Pr:Lu3Al5O12 transparent ceramics from co-precipitated nanopowders. J Alloys Compd 2020, 818: 152885.
[198]
Pejchal J, Buryi M, Babin V, et al. Luminescence and scintillation properties of Mg-codoped LuAG:Pr single crystals annealed in air. J Lumin 2017, 181: 277–285.
[199]
Lin H, Zhou SM, Teng H. Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications. Opt Mater 2011, 33: 1833–1836.
[200]
Li XY, Liu Q, Liu X, et al. Sintering parameter optimization of Tb3Al5O12 magneto-optical ceramics by vacuum sintering and HIP post-treatment. J Am Ceram Soc 2021, 104: 2116–2124.
[201]
Oya T, Nakauchi D, Okada G, et al. Scintillation properties of Ce-doped Tb3Al5O12. Nucl Instrum Meth A 2017, 866: 134–139.
[202]
Nakauchi D, Okada G, Kawano N, et al. Luminescent and scintillation properties of Ce-doped Tb3Al5O12 crystal grown from Al-rich composition. Appl Phys Express 2017, 10: 072601.
[203]
Hu C, Feng XQ, Li J, et al. Fabrication, optical and scintillation properties of (Lu0.75,Y0.25)AG:Pr ceramic scintillators. Opt Mater 2017, 69: 214–218.
[204]
Hu C, Feng XQ, Li J, et al. Role of Y admixture in (Lu1−xYx)3Al5O12:Pr ceramic scintillators free of host luminescence. Phys Rev Appl 2016, 6: 064026.
[205]
Dissertori G, Luckey D, Nessi-Tedaldi F, et al. Performance studies of scintillating ceramic samples exposed to ionizing radiation. In: Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Anaheim, USA, 2012: 305–307.
DOI
[206]
Ogino H, Yoshikawa A, Nikl M, et al. Growth and optical properties of Lu3(Ga,Al)5O12 single crystals for scintillator application. J Cryst Growth 2009, 311: 908–911.
[207]
Li JG, Sakka Y. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Sci Technol Adv Mater 2015, 16: 014902.
[208]
Li XD, Li JG, Xiu ZM, et al. Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics. J Am Ceram Soc 2010, 93: 2229–2235.
[209]
Boulon G, Epicier T, Zhao W, et al. Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics. Jpn J Appl Phys 2011, 50: 090207.
[210]
Hirano S, Okada G, Kawaguchi N, et al. Scintillation properties of Ce-doped (Gd0.32Y0.68)3Al5O12 transparent ceramics. Opt Mater 2017, 66: 410–414.
[211]
Zhao W, Mancini C, Amans D, et al. Evidence of the inhomogeneous Ce3+ distribution across grain boundaries in transparent polycrystalline Ce3+-doped (Gd,Y)3Al5O12 garnet optical ceramics. Jpn J Appl Phys 2010, 49: 022602.
[212]
Kamada K, Yanagida T, Endo T, et al. 2-inch size single crystal growth and scintillation properties of new scintillator; Ce:Gd3Al2Ga3O12. In: Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 2011: 1927–1929.
[213]
Kanai T, Satoh M, Miura I. Characteristics of a nonstoichiometric Gd3+δ(Al,Ga)5−δO12:Ce garnet scintillator. J Am Ceram Soc 2008, 91: 456–462.
[214]
Huang X, He J, Jiang YG, et al. Ultrafast GGAG:Ce X-ray scintillation ceramics with Ca2+ and Mg2+ co-dopants. Ceram Int 2022, 48: 23571–23577.
[215]
Dosovitskiy G, Dubov V, Karpyuk P, et al. Activator segregation and micro-luminescence properties in GAGG:Ce ceramics. J Lumin 2021, 236: 118140.
[216]
Korzhik M, Alenkov V, Buzanov O, et al. Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5–Y0.5)3Al2Ga3O12:Ce,Mg. Cryst Eng Comm 2020, 22: 2502–2506.
[217]
Korzhik M, Retivov V, Bondarau A, et al. Role of the dilution of the Gd sublattice in forming the scintillation properties of quaternary (Gd,Lu)3Al2Ga3O12:Ce ceramics. Crystals 2022, 12: 1196.
[218]
Zhang GR, Wu YQ. High-entropy transparent ceramics: Review of potential candidates and recently studied cases. Int J Appl Ceram Technol 2022, 19: 644–672.
[219]
Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater 2020, 5: 295–309.
[220]
Švejkar R, Šulc J, Němec M, et al. Line-tunable Er:GGAG laser. Opt Lett 2018, 43: 3309–3312.
[221]
Kuwano Y, Saito S, Hase U. Crystal growth and optical properties of Nd:GGAG. J Cryst Growth 1988, 92: 17–22.
[222]
Stehlík M, Šulc J, Boháček P, et al. Wavelength tunability of laser based on Yb-doped GGAG crystal. Laser Phys 2018, 28: 105802.
[223]
Chen XQ, Qin HM, Zhang Y, et al. Microstructure and optical properties of transparent Nd:GAGG ceramics prepared via solid-state reactive sintering. Opt Mater Express 2016, 6: 610–619.
[224]
Zhang JY, Luo ZH, Jiang HC, et al. A novel banded structure ceramic phosphor for high-power white LEDs. Chem Commun 2017, 53: 6772–6775.
[225]
Liu GY, Wang B, Li JK, et al. Research progress of gadolinium aluminum garnet based optical materials. Physica B 2021, 603: 412775.
[226]
Kamada K, Shoji Y, Kochurikhin VV, et al. Single crystal growth of Ce:Gd3(Ga,Al)5O12 with various Mg concentration and their scintillation properties. J Cryst Growth 2017, 468: 407–410.
[227]
Shimazoe K, Yoshino M, Ohshima Y, et al. Development of simultaneous PET and Compton imaging using GAGG–SiPM based pixel detectors. Nucl Instrum Meth A 2020, 954: 161499.
[228]
Chen SL, Jiang BX, Zhu QQ, et al. Effect of annealing atmosphere on scintillation properties of GYGAG:Ce,Mg scintillator ceramics. Nucl Instrum Meth A 2019, 942: 162360.
[229]
Tyagi M, Sarkar PS, Singh AK, et al. Development of neutron detector based on Gd3Ga3Al2O12:Ce single crystals. IEEE Trans Nucl Sci 2019, 66: 724–728.
[230]
Wang Z, Guo H, Qian S, et al. Performance study of GAGG:Ce scintillator for gamma and neutron detection. J Instrum 2020, 15: C06031.
[231]
Kindem J, Conwell R, Cherepy NJ, et al. Performance comparison of small GYGAG (Ce) and CsI(Tl) scintillators with PIN detectors. In: Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 2011: 1621–1623.
DOI
[232]
Cherepy NJ, Seeley ZM, Payne SA, et al. Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. In: Proceedings of the SPIE 9593, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVII, San Diego, USA, 2015: 95930P.
DOI
[233]
Swanberg EL, Cherepy NJ, Wihl BM, et al. Transparent ceramic garnet gamma-ray spectrometer with directionality. IEEE Trans Nucl Sci 2018, 65: 2303–2309.
[234]
Cherepy NJ, Payne SA, Sturm BW, et al. Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators. In: Proceedings of the SPIE 8142, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIII, San Diego, USA, 2011: 81420W.
DOI
[235]
Jarrell JT, Cherepy NJ, Seeley ZM, et al. Beta radiation hardness of GYGAG(Ce) transparent ceramic scintillators. IEEE Trans Nucl Sci 2022, 69: 938–941.
[236]
Zhang JY, Luo ZH, Jiang HC, et al. Sintering of GGAG:Ce3+, xY3+ transparent ceramics in oxygen atmosphere. Ceram Int 2017, 43: 16036–16041.
[237]
Zhang JY, Luo ZH, Jiang HC, et al. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation. Ultrason Sonochem 2017, 39: 792–797.
[238]
Qiu XT, Luo ZH, Zhang JY, et al. Mechanical properties and machinability of GYGAG:Ce ceramic scintillators. Ceram Int 2020, 46: 4550–4555.
[239]
Korzhik M, Borisevich A, Fedorov A, et al. The scintillation mechanisms in Ce and Tb doped (GdxY1−x)Al2Ga3O12 quaternary garnet structure crystalline ceramics. J Lumin 2021, 234: 117933.
[240]
Korzhik M, Abashev R, Fedorov A, et al. Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family. Nucl Eng Technol 2022, 54: 2579–2585.
[241]
Ghabrial A, Franklin D, Zaidi H. A Monte Carlo simulation study of the impact of novel scintillation crystals on performance characteristics of PET scanners. Phys Medica 2018, 50: 37–45.
[242]
Wu YT, Luo ZH, Jiang HC, et al. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study. Nucl Instrum Meth A 2015, 780: 45–50.
[243]
Babin V, Chernenko K, Kučera M, et al. Photostimulated luminescence and defects creation processes in Ce3+-doped epitaxial films of multicomponent Lu3−xGdxGayAl5−yO12 garnets. J Lumin 2016, 179: 487–495.
[244]
Wu YT, Luo JL, Nikl M, et al. Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study. APL Mater 2014, 2: 012101.
[245]
Chen XQ, Qin HM, Zhang Y, et al. Fabrication of cerium-doped nonstoichiometric (Ce,Lu,Gd)3+δ(Ga,Al)5−δO12 transparent ceramics. J Rare Earths 2015, 33: 863–866.
[246]
Wang YM, Baldoni G, Rhodes WH, et al. Transparent garnet ceramic scintillators for gamma-ray detection. In: Proceedings of the SPIE 8507, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, San Diego, USA, 2012: 850717.
DOI
[247]
Khanin VM, Venevtsev I, Chernenko K, et al. Influence of 3d transition metal impurities on garnet scintillator afterglow. Cryst Growth Des 2020, 20: 3007–3017.
[248]
Khanin VM, Vrubel II, Polozkov RG, et al. Complex garnets: Microscopic parameters characterizing afterglow. J Phys Chem C 2019, 123: 22725–22734.
[249]
Chewpraditkul W, Pattanaboonmee N, Sakthong O, et al. Luminescence and scintillation properties of Mg2+-codoped Lu0.6Gd2.4Al2Ga3O12:Ce single crystal. IEEE Trans Nucl Sci 2020, 67: 904–909.
[250]
Wang YM, Baldoni G, Brecher C, et al. Properties of transparent (Gd,Lu)3(Al,Ga)5O12:Ce ceramic with Mg, Ca and Ce co-dopants. In: Proceedings of the SPIE 9594, Medical Applications of Radiation Detectors V, San Diego, USA, 2015: 95940C.
[251]
Khanin V, Venevtsev I, Chernenko K, et al. Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga,Al)5O12 ceramics. J Lumin 2021, 237: 118150.
[252]
Kamada K, Yanagida T, Pejchal J, et al. Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds. J Phys D Appl Phys 2011, 44: 505104.
[253]
Kimura H, Maeda H, Sato M. Czochralski growth of Gd3(Ga1−xAlx)5O12 single crystals. J Cryst Growth 1986, 74: 187–190.
[254]
Kamada K, Shoji Y, Kochurikhin VV, et al. Large size Czochralski growth and scintillation properties of Mg2+ co-doped Ce:Gd3Ga3Al2O12. IEEE Trans Nucl Sci 2016, 63: 443–447.
[255]
Wang C, Wu YT, Ding DZ, et al. Optical and scintillation properties of Ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method. Nucl Instrum Meth A 2016, 820: 8–13.
[256]
Yoshino M, Kamada K, Shoji Y, et al. Effect of Mg co-doping on scintillation properties of Ce:Gd3(Ga,Al)5O12 single crystals with various Ga/Al ratios. J Cryst Growth 2017, 468: 420–423.
[257]
Ueno M, Kim KJ, Kamada K, et al. Bulk single crystal growth of W co-doped Ce:Gd3Ga3Al2O12 by Czochralski method. IEEE Trans Nucl Sci 2020, 67: 1045–1048.
[258]
Chen XP, Hu ZW, Feng YG, et al. Luminescence and scintillation characteristics of cerium doped Gd2YGa3Al2O12 ceramics. Opt Mater 2019, 90: 20–25.
[259]
Korzhik M, Tamulaitis G, Vasil’ev AN. Shallow traps in scintillation materials. In: Physics of Fast Processes in Scintillators. Korzhik M, Tamulaitis G, Vasil’ev AN, Eds. Cham, Switzerland: Springer Chem, 2020: 113–130.
DOI
[260]
Chen SL, Jiang BX, Yang QH, et al. Fabrication of Ce:(Gd2Y)(Ga3Al2)O12 scintillator ceramic by oxygen-atmosphere sintering and hot isostatic pressing. J Eur Ceram Soc 2017, 37: 3411–3415.
[261]
Wang C, Ding DZ, Wu YT, et al. Effect of thermal annealing on scintillation properties of Ce:Gd2Y1Ga2.7Al2.3O12 under different atmosphere. Appl Phys A 2017, 123: 384.
[262]
Meng F, Wu YT, Koschan M, et al. Effect of annealing atmosphere on the cerium valence state and F+ luminescence center in Ca-codoped GGAG:Ce single crystals. Phys Status Solidi B 2015, 252: 1394–1401.
Journal of Advanced Ceramics
Pages 1825-1848
Cite this article:
ZHU D, NIKL M, CHEWPRADITKUL W, et al. Development and prospects of garnet ceramic scintillators: A review. Journal of Advanced Ceramics, 2022, 11(12): 1825-1848. https://doi.org/10.1007/s40145-022-0660-9

1664

Views

407

Downloads

30

Crossref

27

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 25 May 2022
Revised: 04 September 2022
Accepted: 06 September 2022
Published: 18 November 2022
© The Author(s) 2022.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return