Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Tungsten carbide (WC)-based materials are widely considered as the hydrogen evolution reaction (HER) process catalysts due to their "Pt-like" electronic structure. Nonetheless, traditional powder electrodes have a high cost, and display problems related to the process itself and the poor stability over operation time. This paper presented a self-supported asymmetric porous ceramic electrode with WO3-x whiskers formed in situ on the walls of the finger-like holes and membrane surface, which was prepared by combining phase inversion tape-casting, pressureless sintering, and thermal treatment in a CO2 atmosphere. The optimized ceramic electrode displayed good catalytic HER activity and outstanding stability at high current densities. More specifically, it demonstrated the lowest overpotentials of 107 and 123 mV and the lowest Tafel slopes of 59.3 and 72.4 mV·dec-1 at 10 mA·cm-2 in acidic and alkaline media, respectively. This superior performance was ascribed to the structure of the ceramic membrane and the charge transfer efficiency, which was favored by the in situ developed WC/WO3-x heterostructure and the oxygen vacancies.
1314
Views
134
Downloads
43
Crossref
39
Web of Science
41
Scopus
3
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.