References(50)
[1]
Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 2012, 37: 891-898.
[2]
Vaßen R, Jarligo MO, Steinke T, et al. Overview on advanced thermal barrier coatings. Surf Coat Technol 2010, 205: 938-942.
[3]
Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance. J Adv Ceram 2020, 9: 232-242.
[4]
Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater 2016, 15: 804-809.
[5]
Chevalier J, Gremillard L, Virkar AV, et al. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J Am Ceram Soc 2009, 92: 1901-1920.
[6]
Levi CG, Hutchinson JW, Vidal-Sétif MH, et al. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull 2012, 37: 932-941.
[7]
Poerschke DL, Jackson RW, Levi CG. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions. Annu Rev Mater Res 2017, 47: 297-330.
[8]
Guo L, Gao Y, Ye FX, et al. CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine. Acta Metall Sin 2021, 57: 1184-1198. (in Chinese)
[9]
Krämer S, Faulhaber S, Chambers M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium- alumino-silicate (CMAS) penetration. Mat Sci Eng A 2008, 490: 26-35.
[10]
Li DX, Jiang P, Gao RH, et al. Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion. J Adv Ceram 2021, 10: 551-564.
[11]
Mercer C, Faulhaber S, Evans AG, et al. A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration. Acta Mater 2005, 53: 1029-1039.
[12]
Mohan P, Yao B, Patterson T, et al. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation. Surf Coat Technol 2009, 204: 797-801.
[13]
Naraparaju R, Pubbysetty RP, Mechnich P, et al. EB-PVD alumina (Al2O3) as a top coat on 7YSZ TBCs against CMAS/VA infiltration: Deposition and reaction mechanisms. J Eur Ceram Soc 2018, 38: 3333-3346.
[14]
Aygun A, Vasiliev AL, Padture NP, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater 2007, 55: 6734-6745.
[15]
Wang YH, Ma Z, Liu L, et al. Reaction products of Sm2Zr2O7 with calcium-magnesium-aluminum-silicate (CMAS) and their evolution. J Adv Ceram 2021, 10: 1389-1397.
[16]
Guo L, Li G, Gan ZL. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications. J Adv Ceram 2021, 10: 472-481.
[17]
Guo L, Yan Z, Yu Y, et al. CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 ℃-1350 ℃. Corros Sci 2019, 154: 111-122.
[18]
Guo L, Yan Z, Wang XH, et al. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings. Ceram Int 2019, 45: 7627-7634.
[19]
Yan Z, Guo L, Zhang Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings. Corros Sci 2020, 167: 108532.
[20]
Cui B, Jayaseelan DD, Lee WE. Microstructural evolution during high-temperature oxidation of Ti2AlC ceramics. Acta Mater 2011, 59: 4116-4125.
[21]
Jing J, Li JM, He Z, et al. High-temperature CMAS resistance performance of Ti2AlC oxide scales. Corros Sci 2020, 174: 108832.
[22]
Badie S, Dash A, Sohn YJ, et al. Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti2AlC ceramics. J Am Ceram Soc 2021, 104: 1669-1688.
[23]
Yang HJ, Pei YT, Rao JC, et al. High temperature healing of Ti2AlC: On the origin of inhomogeneous oxide scale. Scripta Mater 2011, 65: 135-138.
[24]
Wang XH, Zhou YC. High-temperature oxidation behavior of Ti2AlC in air. Oxid Met 2003, 59: 303-320.
[25]
Steinke T, Sebold D, Mack DE, et al. A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions. Surf Coat Technol 2010, 205: 2287-2295.
[26]
Rezanka S, Mack DE, Mauer G, et al. Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack. Surf Coat Technol 2017, 324: 222-235.
[27]
Zhou DP, Mack DE, Bakan E, et al. Thermal cycling performances of multilayered yttria-stabilized zirconia/ gadolinium zirconate thermal barrier coatings. J Am Ceram Soc 2020, 103: 2048-2061.
[28]
Wang XH, Zhou YC. Solid-liquid reaction synthesis and simultaneous densification of polycrystalline Ti2AlC. Zeitschrift Für Met 2002, 93: 66-71.
[29]
Smialek JL. Relative Ti2AlC scale volatility under 1300 ℃ combustion conditions. Coatings 2020, 10: 142.
[30]
Smialek JL. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxid Met 2015, 83: 351-366.
[31]
Barsoum MW, Tzenov N, Procopio A, et al. Oxidation of Tin+1AlXn (n = 1-3 and X = C, N) II. Experimental results. J Electrochem Soc 2001, 148: C551-C562.
[32]
Song GM, Pei YT, Sloof WG, et al. Early stages of oxidation of Ti3AlC2 ceramics. Mater Chem Phys 2008, 112: 762-768.
[33]
Wang JY, Zhou YC, Liao T, et al. A first-principles investigation of the phase stability of Ti2AlC with Al vacancies. Scripta Mater 2008, 58: 227-230.
[34]
Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena, 2nd edn. Elsevier Science Ltd., 2004.
[35]
He MY, Evans AG, Hutchinson JW. The ratcheting of compressed thermally grown thin films on ductile substrates. Acta Mater 2000, 48: 2593-2601.
[36]
Balint DS, Hutchinson JW. An analytical model of rumpling in thermal barrier coatings. J Mech Phys Solids 2005, 53: 949-973.
[37]
Yu WB, Vallet M, Levraut B, et al. Oxidation mechanisms in bulk Ti2AlC: Influence of the grain size. J Eur Ceram Soc 2020, 40: 1820-1828.
[38]
Poerschke DL, Barth TL, Levi CG. Equilibrium relationships between thermal barrier oxides and silicate melts. Acta Mater 2016, 120: 302-314.
[39]
De Capitani C, Kirschen M. A generalized multicomponent excess function with application to immiscible liquids in the system CaO-SiO2-TiO2. Geochimica Cosmochimica Acta 1998, 62: 3753-3763.
[40]
Kirschen M, de Capitani C. Immiscible silicate liquids in the CaO-SiO2-TiO2-Al2O3 system. Swiss J Geosci Suppl 1998, 78: 175-178.
[41]
Webster RI, Opila EJ. The effect of TiO2 additions on CaO-MgO-Al2O3-SiO2 (CMAS) crystallization behavior from the melt. J Am Ceram Soc 2019, 102: 3354-3367.
[42]
Sun ZM. Progress in research and development on MAX phases: A family of layered ternary compounds. Int Mater Rev 2011, 56: 143-166.
[43]
Munro M. Evaluated material properties for a sintered alpha-alumina. J Am Ceram Soc 1997, 80: 1919-1928.
[44]
Lo CL, Duh JG, Chiou BS, et al. Low-temperature sintering and microwave dielectric properties of anorthite-based glass-ceramics. J Am Ceram Soc 2002, 85: 2230-2235.
[45]
Byeon JW, Liu J, Hopkins M, et al. Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air. Oxid Met 2007, 68: 97-111.
[46]
Nowak W, Naumenko D, Mor G, et al. Effect of processing parameters on MCrAlY bondcoat roughness and lifetime of APS-TBC systems. Surf Coat Technol 2014, 260: 82-89.
[47]
Quadakkers WJ, Tyagi AK, Clemens D, et al. The significance of bond coat oxidation for the life of TBC coatings. Elevated Temperature Coatings: Science and Technology III, 1999: 119-130.
[48]
Chang GC, Phucharoen W, Miller RA. Behavior of thermal barrier coatings for advanced gas turbine blades. Surf Coat Technol 1987, 30: 13-28.
[49]
Freborg AM, Ferguson BL, Brindley WJ, et al. Modeling oxidation induced stresses in thermal barrier coatings. Mat Sci Eng A 1998, 245: 182-190.
[50]
Ahrens M, Vaßen R, Stöver D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness. Surf Coat Technol 2002, 161: 26-35.