552
Views
133
Downloads
12
Crossref
10
WoS
12
Scopus
0
CSCD
Due to the complex products and irradiation-induced defects, it is hard to understand and even predict the thermal conductivity variation of materials under fast neutron irradiation, such as the abrupt degradation of thermal conductivity of boron carbide (B4C) at the very beginning of the irradiation process. In this work, the contributions of various irradiation-induced defects in B4C primarily consisting of the substitutional defects, Frenkel defect pairs, and helium bubbles were re-evaluated separately and quantitatively in terms of the phonon scattering theory. A theoretical model with an overall consideration of the contributions of all these irradiation-induced defects was proposed without any adjustable parameters, and validated to predict the thermal conductivity variation under irradiation based on the experimental data of the unirradiated, irradiated, and annealed B4C samples. The predicted thermal conductivities by this model show a good agreement with the experimental data after irradiation. The calculation results and theoretical analysis in light of the experimental data demonstrate that the substitutional defects of boron atoms by lithium atoms, and the Frenkel defect pairs due to the collisions with the fast neutrons, rather than the helium bubbles with strain fields surrounding them, play determining roles in the abrupt degradation of thermal conductivity with burnup.
Due to the complex products and irradiation-induced defects, it is hard to understand and even predict the thermal conductivity variation of materials under fast neutron irradiation, such as the abrupt degradation of thermal conductivity of boron carbide (B4C) at the very beginning of the irradiation process. In this work, the contributions of various irradiation-induced defects in B4C primarily consisting of the substitutional defects, Frenkel defect pairs, and helium bubbles were re-evaluated separately and quantitatively in terms of the phonon scattering theory. A theoretical model with an overall consideration of the contributions of all these irradiation-induced defects was proposed without any adjustable parameters, and validated to predict the thermal conductivity variation under irradiation based on the experimental data of the unirradiated, irradiated, and annealed B4C samples. The predicted thermal conductivities by this model show a good agreement with the experimental data after irradiation. The calculation results and theoretical analysis in light of the experimental data demonstrate that the substitutional defects of boron atoms by lithium atoms, and the Frenkel defect pairs due to the collisions with the fast neutrons, rather than the helium bubbles with strain fields surrounding them, play determining roles in the abrupt degradation of thermal conductivity with burnup.
This work was supported by the National Natural Science Foundation of China (Grant No. 52172062) and the Beijing Natural Science Foundation (Grant No. 2182007).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.