References(63)
[1]
Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun 2015, 6: 8485.
[2]
Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun 2018, 9: 4980.
[3]
Harrington TJ, Gild J, Sarker P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater 2019, 166: 271-280.
[4]
Rost CM, Borman T, Hossain MD, et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Mater 2020, 196: 231-239.
[5]
Jin T, Sang XH, Unocic RR, et al. Mechanochemical- assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv Mater 2018, 30: 1707512.
[6]
Gild J, Zhang YY, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep 2016, 6: 37946.
[7]
Feng L, Fahrenholtz WG, Hilmas GE. Processing of dense high-entropy boride ceramics. J Eur Ceram Soc 2020, 40: 3815-3823.
[8]
Zhang RZ, Gucci F, Zhu H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg Chem 2018, 57: 13027-13033.
[9]
Qin Y, Liu JX, Li F, et al. A high entropy silicide by reactive spark plasma sintering. J Adv Ceram 2019, 8: 148-152.
[10]
Qin Y, Wang JC, Liu JX, et al. High-entropy silicide ceramics developed from (TiZrNbMoW)Si2 formulation doped with aluminum. J Eur Ceram Soc 2020, 40: 2752-2759.
[11]
Xiang HM, Xing Y, Dai FZ, et al. High-entropy ceramics: Present status, challenges, and a look forward. J Adv Ceram 2021, 10: 385-441.
[12]
Wang QS, Sarkar A, Wang D, et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries. Energy Environ Sci 2019, 12: 2433-2442.
[13]
Ghigna P, Airoldi L, Fracchia M, et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study. ACS Appl Mater Interfaces 2020, 12: 50344-50354.
[14]
Lun ZY, Ouyang B, Kwon DH, et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat Mater 2021, 20: 214-221.
[15]
Jiang B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371: 830-834.
[16]
Chen H, Xiang HM, Dai FZ, et al. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J Mater Sci Technol 2020, 36: 134-139.
[17]
Zhao ZF, Chen H, Xiang HM, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. J Adv Ceram 2020, 9: 303-311.
[18]
Ren K, Wang QK, Shao G, et al. Multicomponent high- entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Mater 2020, 178: 382-386.
[19]
Lashmi PG, Ananthapadmanabhan PV, Unnikrishnan G, et al. Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems. J Eur Ceram Soc 2020, 40: 2731-2745.
[20]
Zhao M, Ren XR, Yang J, et al. Thermo-mechanical properties of ThO2-doped Y2O3 stabilized ZrO2 for thermal barrier coatings. Ceram Int 2016, 42: 501-508.
[21]
Cao XQ, Vassen R, Tietz F, et al. New double-ceramic- layer thermal barrier coatings based on zirconia-rare earth composite oxides. J Eur Ceram Soc 2006, 26: 247-251.
[22]
Dwivedi G, Viswanathan V, Sampath S, et al. Fracture toughness of plasma-sprayed thermal barrier ceramics: Influence of processing, microstructure, and thermal aging. J Am Ceram Soc 2014, 97: 2736-2744.
[23]
Ren XR, Pan W. Mechanical properties of high-temperature- degraded yttria-stabilized zirconia. Acta Mater 2014, 69: 397-406.
[24]
Xing C, Yi MY, Shan X, et al. Sintering behavior of a nanostructured thermal barrier coating deposited using electro-sprayed particles. J Am Ceram Soc 2020, 103: 7267-7282.
[25]
Limarga AM, Shian S, Baram M, et al. Effect of high- temperature aging on the thermal conductivity of nanocrystalline tetragonal yttria-stabilized zirconia. Acta Mater 2012, 60: 5417-5424.
[26]
Tan Y, Longtin JP, Sampath S, et al. Effect of the starting microstructure on the thermal properties of as-sprayed and thermally exposed plasma-sprayed YSZ coatings. J Am Ceram Soc 2009, 92: 710-716.
[27]
Wang YX, Zhou CG. Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4 + V2O5 molten salts. Prog Nat Sci Mater Int 2017, 27: 507-513.
[28]
Wei QL, Guo HB, Gong SK. Microstructure evolution of Nd2O3 and Yb2O3 co-doped YSZ thermal barrier coatings during high temperature exposure. Mater Sci Forum 2007, 546-549: 1735-1738.
[29]
Wang Q, Guo L, Yan Z, et al. Phase composition, thermal conductivity, and toughness of TiO2-doped, Er2O3-stabilized ZrO2 for thermal barrier coating applications. Coatings 2018, 8: 253.
[30]
Cao XQ, Vassen R, Fischer W, et al. Lanthanum-cerium oxide as a thermal barrier-coating material for high- temperature applications. Adv Mater 2003, 15: 1438-1442.
[31]
Shen ZY, Liu GX, Mu RD, et al. Effects of Er stabilization on thermal property and failure behavior of Gd2Zr2O7 thermal barrier coatings. Corros Sci 2021, 185: 109418.
[32]
Wang J, Chong XY, Zhou R, et al. Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scripta Mater 2017, 126: 24-28.
[33]
Wang CJ, Wang Y. Thermophysical properties of La2(Zr0.7Ce0.3)2O7 prepared by hydrothermal synthesis for nano-sized thermal barrier coatings. Ceram Int 2015, 41: 4601-4607.
[34]
Zhang RZ, Reece MJ. Review of high entropy ceramics: Design, synthesis, structure and properties. J Mater Chem A 2019, 7: 22148-22162.
[35]
Braun JL, Rost CM, Lim M, et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv Mater 2018, 30: 1805004.
[36]
Wright AJ, Wang QY, Ko ST, et al. Size disorder as a descriptor for predicting reduced thermal conductivity in medium-and high-entropy pyrochlore oxides. Scripta Mater 2020, 181: 76-81.
[37]
Zhao ZF, Xiang HM, Dai FZ, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J Mater Sci Technol 2019, 35: 2647-2651.
[38]
Chen H, Zhao ZF, Xiang HM, et al. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material. J Mater Sci Technol 2020, 48: 57-62.
[39]
Ren K, Wang QK, Cao YJ, et al. Multicomponent rare- earth cerate and zirconocerate ceramics for thermal barrier coating materials. J Eur Ceram Soc 2021, 41: 1720-1725.
[40]
Schlichting KW, Padture NP, Klemens PG. Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci 2001, 36: 3003-3010.
[41]
Che JW, Wang XZ, Liu XY, et al. Thermal transport property in pyrochlore-type and fluorite-type A2B2O7 oxides by molecular dynamics simulation. Int J Heat Mass Transf 2022, 182: 122038.
[42]
Yamamura H, Nishino H, Kakinuma K, et al. Crystal phase and electrical conductivity in the pyrochlore-type composition systems, Ln2Ce2O7 (Ln = La, Nd, Sm, Eu, Gd, Y and Yb). J Ceram Soc Jpn 2003, 111: 902-906.
[43]
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 1976, 32: 751-767.
[44]
Teng Z, Tan YQ, Zeng SF, et al. Preparation and phase evolution of high-entropy oxides A2B2O7 with multiple elements at A and B sites. J Eur Ceram Soc 2021, 41: 3614-3620.
[45]
Zhang YL, Guo L, Yang YP, et al. Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ. Chin J Aeronaut 2012, 25: 948-953.
[46]
Feng J, Xiao B, Zhou R, et al. Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores. Scripta Mater 2013, 69: 401-404.
[47]
Zhang HS, Wei Y, Li G, et al. Investigation about thermal conductivities of La2Ce2O7 doped with calcium or magnesium for thermal barrier coatings. J Alloys Compd 2012, 537: 141-146.
[48]
Zhong XH, Xu ZH, Zhang YF, et al. Phase stability and thermophysical properties of neodymium cerium composite oxide. J Alloys Compd 2009, 469: 82-88.
[49]
Zhang HS, Zhao LM, Sang WW, et al. Thermophysical performances of (La1/6Nd1/6Yb1/6Y1/6Sm1/6Lu1/6)2Ce2O7 high- entropy ceramics for thermal barrier coating applications. Ceram Int 2022, 48: 1512-1521.
[50]
Zhang HS, Liao SR, Dang XD, et al. Preparation and thermal conductivities of Gd2Ce2O7 and (Gd0.9Ca0.1)2Ce2O6.9 ceramics for thermal barrier coatings. J Alloys Compd 2011, 509: 1226-1230.
[51]
Clarke DR. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 2003, 163-164: 67-74.
[52]
Klemens PG. The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc A 1955, 68: 1113-1128.
[53]
Callaway J, von Baeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys Rev 1960, 120: 1149-1154.
[54]
Tian ZL, Lin CF, Zheng LY, et al. Defect-mediated multiple-enhancement of phonon scattering and decrement of thermal conductivity in (YxYb1-x)2SiO5 solid solution. Acta Mater 2018, 144: 292-304.
[55]
Chen L, Hu MY, Wu P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J Am Ceram Soc 2019, 102: 4809-4821.
[56]
Chen L, Jiang YH, Chong XY, et al. Synthesis and thermophysical properties of RETa3O9 (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J Am Ceram Soc 2018, 101: 1266-1278.
[57]
Wu FS, Wu P, Zhou YX, et al. The thermo-mechanical properties and ferroelastic phase transition of RENbO4 (RE = Y, La, Nd, Sm, Gd, Dy, Yb) ceramics. J Am Ceram Soc 2020, 103: 2727-2740.
[58]
Chen L, Wu P, Song P, et al. Potential thermal barrier coating materials: RE3NbO7 (RE = La, Nd, Sm, Eu, Gd, Dy) ceramics. J Am Ceram Soc 2018, 101: 4503-4508.
[59]
Zheng Q, Chen L, Song P, et al. Potential thermal barrier coating materials: RE2FeTaO7 (RE = Y, Eu, Gd, Dy) compounds. J Alloys Compd 2021, 855: 157408.
[60]
Ren XM, Tian ZL, Zhang J, et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material. Scripta Mater 2019, 168: 47-50.
[61]
Chen L, Hu MY, Guo J, et al. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase. J Mater Sci Technol 2020, 52: 20-28.
[62]
Zhu JT, Meng XY, Xu J, et al. Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy rare earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb). J Eur Ceram Soc 2021, 41: 1052-1057.
[63]
Dehkharghani AMF, Rahimipour MR, Zakeri M. Improving the thermal shock resistance and fracture toughness of synthesized La2Ce2O7 thermal barrier coatings through formation of La2Ce2O7/YSZ composite coating via air plasma spraying. Surf Coat Technol 2020, 399: 126174.