984
Views
183
Downloads
20
Crossref
15
WoS
22
Scopus
1
CSCD
This work employed an inductively coupled plasma wind tunnel to study the dynamic oxidation mechanisms of carbon fiber reinforced SiC matrix composite (Cf/SiC) in high-enthalpy and high-speed plasmas. The results highlighted a transition of passive/active oxidations of SiC at 800-1600 ℃ and 1-5 kPa. Specially, the active oxidation led to the corrosion of the SiC coating and interruption of the SiO2 growth. The transition borders of active/passive oxidations were thus defined with respect to oxidation temperature and partial pressure of atomic O in the high-enthalpy and high-speed plasmas. In the transition and passive domains, the SiC dissipation was negligible. By multiple dynamic oxidations of Cf/SiC in the domains, the SiO2 thickness was not monotonously increased due to the competing mechanisms of passive oxidation of SiC and dissipation of SiO2. In addition, the mechanical properties of the SiC coating/matrix and the Cf/SiC were maintained after long-term dynamic oxidations, which suggested an excellent thermal stability of Cf/SiC serving in thermal protection systems (TPSs) of reusable hypersonic vehicles.
This work employed an inductively coupled plasma wind tunnel to study the dynamic oxidation mechanisms of carbon fiber reinforced SiC matrix composite (Cf/SiC) in high-enthalpy and high-speed plasmas. The results highlighted a transition of passive/active oxidations of SiC at 800-1600 ℃ and 1-5 kPa. Specially, the active oxidation led to the corrosion of the SiC coating and interruption of the SiO2 growth. The transition borders of active/passive oxidations were thus defined with respect to oxidation temperature and partial pressure of atomic O in the high-enthalpy and high-speed plasmas. In the transition and passive domains, the SiC dissipation was negligible. By multiple dynamic oxidations of Cf/SiC in the domains, the SiO2 thickness was not monotonously increased due to the competing mechanisms of passive oxidation of SiC and dissipation of SiO2. In addition, the mechanical properties of the SiC coating/matrix and the Cf/SiC were maintained after long-term dynamic oxidations, which suggested an excellent thermal stability of Cf/SiC serving in thermal protection systems (TPSs) of reusable hypersonic vehicles.
This work was supported by the National Natural Science Foundation of China (Nos. 11902333 and 51972027) and the CARDC Fundamental and Frontier Technology Research Fund.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.