Journal Home > Volume 10 , issue 5

The explosive process of 5G communication evokes the urgent demand of miniaturized and integrated dielectric ceramics filter. It is a pressing need to advance the development of dielectric ceramics utilization of emerging technology to design new materials and understand the polarization mechanism. This review provides the summary of the study of microwave dielectric ceramics (MWDCs) sintered higher than 1000 ℃ from 2010 up to now, with the purpose of taking a broad and historical view of these ceramics and illustrating research directions. To date, researchers endeavor to explain the structure-property relationship of ceramics with multitude of approaches and design a new formula or strategy to obtain excellent microwave dielectric properties. There are variety of factors that impact the permittivity, dielectric loss, and temperature stability of dielectric materials, covering intrinsic and extrinsic factors. Many of these factors are often intertwined, which can complicate new dielectric material discovery and the mechanism investigation. Because of the various ceramics systems, pseudo phase diagram was used to classify the dielectric materials based on the composition. In this review, the ceramics were firstly divided into ternary systems, and then brief description of the experimental probes and complementary theoretical methods that have been used to discern the intrinsic polarization mechanisms and the origin of intrinsic loss was mentioned. Finally, some perspectives on the future outlook for high-temperature MWDCs were offered based on the synthesis method, characterization techniques, and significant theory developments.


menu
Abstract
Full text
Outline
About this article

The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams

Show Author's information Hongcheng YANGa,bShuren ZHANGa,bHongyu YANGa,bQingyu WENa,bQiu YANGa,bLing GUIa,bQian ZHAOa,bEnzhu LIa,b( )
National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, China
Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

The explosive process of 5G communication evokes the urgent demand of miniaturized and integrated dielectric ceramics filter. It is a pressing need to advance the development of dielectric ceramics utilization of emerging technology to design new materials and understand the polarization mechanism. This review provides the summary of the study of microwave dielectric ceramics (MWDCs) sintered higher than 1000 ℃ from 2010 up to now, with the purpose of taking a broad and historical view of these ceramics and illustrating research directions. To date, researchers endeavor to explain the structure-property relationship of ceramics with multitude of approaches and design a new formula or strategy to obtain excellent microwave dielectric properties. There are variety of factors that impact the permittivity, dielectric loss, and temperature stability of dielectric materials, covering intrinsic and extrinsic factors. Many of these factors are often intertwined, which can complicate new dielectric material discovery and the mechanism investigation. Because of the various ceramics systems, pseudo phase diagram was used to classify the dielectric materials based on the composition. In this review, the ceramics were firstly divided into ternary systems, and then brief description of the experimental probes and complementary theoretical methods that have been used to discern the intrinsic polarization mechanisms and the origin of intrinsic loss was mentioned. Finally, some perspectives on the future outlook for high-temperature MWDCs were offered based on the synthesis method, characterization techniques, and significant theory developments.

Keywords:

high-temperature microwave dielectric ceramics (MWDCs), pseudo phase diagram, developments and challenges, composition-structure-property relationship
Received: 28 April 2021 Revised: 04 June 2021 Accepted: 06 June 2021 Published: 11 October 2021 Issue date: October 2021
References(602)
[1]
Sebastian M T. Dielectric Materials for Wireless Communication. London, UK: Elsevier, 2008.
[2]
Ohsato H, Tsunooka T, Sugiyama T, et al. Forsterite ceramics for millimeterwave dielectrics. J Electroceramics 2006, 17: 445-450.
[3]
Zhang J, Luo Y, Yue ZX, et al. High-Q and temperature- stable microwave dielectrics in layer cofired Zn1.01Nb2O6/ TiO2/Zn1.01Nb2O6 ceramic architectures. J Am Ceram Soc 2019, 102: 342-350.
[4]
Zhang J, Yue ZX, Luo Y, et al. MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture. Ceram Int 2018, 44: 21000-21003.
[5]
Luo WJ, Li LX, Zhang BW, et al. The mechanism of microwave response in layer-cofired Zn3Nb2O8-TiO2- Zn3Nb2O8 ceramic architecture. J Alloys Compd 2020, 824: 153978.
[6]
Levine BF. Bond susceptibilities and ionicities in complex crystal structures. J Chem Phys 1973, 59: 1463-1486.
[7]
Sebastian MT, Jantunen H. Low loss dielectric materials for LTCC applications: A review. Int Mater Rev 2008, 53: 57-90.
[8]
Sebastian MT, Wang H, Jantunen H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review. Curr Opin Solid State Mater Sci 2016, 20: 151-170.
[9]
Zhou D, Pang LX, Wang DW, et al. BiVO4 based high k microwave dielectric materials: A review. J Mater Chem C 2018, 6: 9290-9313.
[10]
Fang Y, Li L, Xiao Q, et al. Preparation and microwave dielectric properties of cristobalite ceramics. Ceram Int 2012, 38: 4511-4515.
[11]
Li F, Liu P, Ruan P, et al. Microwave dielectric properties of (1-x)SiO2-xTiO2 ceramics. Ceram Int 2015, 41: S582-S587.
[12]
Sreekanth Chakradhar RP, Nagabhushana BM, Chandrappa GT, et al. Solution combustion derived nanocrystalline macroporous wollastonite ceramics. Mater Chem Phys 2006, 95: 169-175.
[13]
Wang HP, Zhang QL, Yang H, et al. Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol-gel process. Ceram Int 2008, 34: 1405-1408.
[14]
Sun HP, Zhang QL, Yang H, et al. (Ca1-xMgx)SiO3: A low-permittivity microwave dielectric ceramic system. Mater Sci Eng: B 2007, 138: 46-50.
[15]
Wang HP, Chen JM, Yang WY, et al. Effects of Al2O3 addition on the sintering behavior and microwave dielectric properties of CaSiO3 ceramics. J Eur Ceram Soc 2012, 32: 541-545.
[16]
Hu W, Liu HX, Hao H, et al. Influence of Al2O3 addition on the microstructure and microwave dielectric properties of α-CaSiO3 ceramics. J Mater Sci: Mater Electron 2015, 26: 211-216.
[17]
Hu W, Liu HX, Hao H, et al. Phase transition, microstructure and microwave dielectric properties of α-CaSiO3 ceramics with SiO2 addition. J Mater Sci: Mater Electron 2015, 26: 1977-1981.
[18]
Hu W, Liu HX, Hao H, et al. Influence of TiO2 additive on the microwave dielectric properties of α-CaSiO3-Al2O3 ceramics. Ceram Int 2015, 41: S510-S514.
[19]
Ma Q, Wu SP, Jiang C, et al. Microwave dielectric properties of SnO2-doped CaSiO3 ceramics. Ceram Int 2013, 39: 2223-2229.
[20]
Joseph T, Sebastian MT. Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M=Ba,Sr,Ca). Mater Lett 2011, 65: 891-893.
[21]
Li LX, Wang YC, Xia WS, et al. Effects of Zn/Mg ratio on the microstructure and microwave dielectric properties of(Zn1-xMgx)2SiO4 ceramics. J Electron Mater 2012, 41: 684-688.
[22]
Ullah A, Liu HX, Hao H, et al. Phase and microstructure evaluation and microwave dielectric properties of Mg1-xNixSiO3 ceramics. J Electron Mater 2016, 45: 5133-5139.
[23]
Fu ZF, Ma JL, Liu P, et al. Crystal structure and microwave dielectric properties of middle-temperature- sintered Mg2Si1-xVxO4 ceramics. J Electroceramics 2016, 36: 82-86.
[24]
Tsunooka T, Androu M, Higashida Y, et al. Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J Eur Ceram Soc 2003, 23: 2573-2578.
[25]
Song KX, Chen XM, Fan XC. Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics. J Am Ceram Soc 2007, 90: 1808-1811.
[26]
Liu L, Feng YB, Qiu T, et al. Microstructures and microwave dielectric properties of Mg2SiO4-Ca0.9Sr0.1TiO3 ceramics. J Mater Sci: Mater Electron 2015, 26: 1316-1321.
[27]
Weng ZZ, Song CX, Xiong ZX, et al. Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 addition. Ceram Int 2019, 45: 13251-13256.
[28]
Lai YM, Zeng YM, Han J, et al. Structure dependence of microwave dielectric properties in Zn2-xSiO4-x-xCuO ceramics. J Eur Ceram Soc 2021, 41: 2602-2609.
[29]
Liang Z, Han XN, Wang G, et al. Microwave dielectric properties and sintering behaviors of Zn1.8SiO3.8 ceramics. J Mater Sci: Mater Electron 2021, 32: 517-523.
[30]
Kingon AI, Maria JP, Streiffer SK. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 2000, 406: 1032-1038.
[31]
Wu SP, Jiang C, Mei YX, et al. Synthesis and microwave dielectric properties of Sm2SiO5 ceramics. J Am Ceram Soc 2012, 95: 37-40.
[32]
Jiang C, Wu SP, Ma Q, et al. Synthesis and microwave dielectric properties of Nd2SiO5 ceramics. J Alloys Compd 2012, 544: 141-144.
[33]
Lai YM, Su H, Wang G, et al. Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. J Alloys Compd 2019, 772: 40-48.
[34]
Xiao M, Wei YS, Zhang P. The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic. Mater Chem Phys 2019, 225: 99-104.
[35]
Cai CY, Chen XQ, Li H, et al. Microwave dielectric properties of Ca1-xSrxMgSi2O6 ceramics. Ceram Int 2020, 46: 27679-27685.
[36]
Chen XQ, Li H, Zhang PC, et al. Phase composition, microstructure, and microwave dielectric properties of CaMnSi2O6 ceramics. Ceram Int 2021, 47: 4083-4089.
[37]
Li CC, Yin CZ, Chen JQ, et al. Crystal structure and dielectric properties of germanate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity. J Eur Ceram Soc 2018, 38: 5246-5251.
[38]
Manu KM, Karthik C, Ubic R, et al. Effect of Ca2+ substitution on the structure, microstructure, and microwave dielectric properties of Sr2Al2SiO7 ceramic. J Am Ceram Soc 2013, 96: 3842-3848.
[39]
Manu KM, Joseph T, Sebastian MT. Temperature compensated Sr2Al2SiO7 ceramic for microwave applications. Mater Chem Phys 2012, 133: 21-23.
[40]
Xiao M, Wei YS, Sun HR, et al. Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic. J Mater Sci: Mater Electron 2018, 29: 20339-20346.
[41]
Xiao M, Wei YS, Zhang P. The correlations between complex chemical bond theory and microwave dielectric properties of Ca2MgSi2O7 ceramics. J Electron Mater 2019, 48: 1652-1659.
[42]
Song XQ, Lei W, Xie MQ, et al. Sintering behaviour, lattice energy and microwave dielectric properties of melilite-type BaCo2Si2O7 ceramics. Mater Res Express 2020, 6: 126322.
[43]
Song XQ, Lu WZ, Lou YH, et al. Synthesis, lattice energy and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics. J Eur Ceram Soc 2020, 40: 3035-3041.
[44]
Song XQ, Zou ZY, Lu WZ, et al. Crystal structure, lattice energy and microwave dielectric properties of melilite-type Ba1-xSrxCu2Si2O7 solid solutions. J Alloys Compd 2020, 835: 155340.
[45]
Wu SP, Chen DF, Mei YX, et al. Synthesis and microwave dielectric properties of Ca3SnSi2O9 ceramics. J Alloys Compd 2012, 521: 8-11.
[46]
Bafrooei HB, Liu B, Su WT, et al. Ca3MgSi2O8: Novel low-permittivity microwave dielectric ceramics for 5G application. Mater Lett 2020, 263: 127248.
[47]
Song XQ, Lei W, Wang F, et al. Phase evolution, crystal structure, and microwave dielectric properties of gillespite- type ceramics. J Am Ceram Soc 2021, 104: 1740-1749.
[48]
Li C, Ding SH, Zhang Y, et al. Effects of Ni2+ substitution on the crystal structure, bond valence, and microwave dielectric properties of BaAl2-2xNi2xSi2O8-x ceramics. J Eur Ceram Soc 2021, 41: 2610-2616.
[49]
Li C, Ding SH, Song TX, et al. Structure and microwave dielectric properties of BaAl2-2xLi2xSi2O8-2x ceramics. Ceram Int 2021, 47: 4895-4904.
[50]
Felsche J. Rare earth silicates with the apatite structure. J Solid State Chem 1972, 5: 266-275.
[51]
Manu KM, Karthik C, Leu LC, et al. Crystal structure and microwave dielectric properties of LiRE9(SiO4)6O2 ceramics (RE = La, Pr, Nd, Sm, Eu, Gd, and Er). J Am Ceram Soc 2013, 96: 1504-1511.
[52]
Thomas S, Sebastian MT. Microwave dielectric properties of SrRE4Si3O13 (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, and Y) ceramics. J Am Ceram Soc 2009, 92: 2975-2981.
[53]
Du K, Zou ZY, Song XQ, et al. Correlation between crystal structure and microwave dielectric properties of CaRE4Si3O13 (RE = La, Nd, Sm, and Er). J Mater Sci: Mater Electron 2020, 31: 3274-3280.
[54]
Ao LY, Tang Y, Li J, et al. Structure characterization and microwave dielectric properties of LiGa5O8 ceramic with low-εr and low loss. J Eur Ceram Soc 2020, 40: 5498-5503.
[55]
Ao LY, Li J, Tang Y, et al. Structure, far-infrared reflectance spectra, and microwave dielectric properties of Ba2MGa11O20 (M = Bi, La) ceramics. Ceram Int 2021, 47: 11899-11905.
[56]
Li FH, Tang Y, Li J, et al. Effect of A-site cation on crystal structure and microwave dielectric properties of AGe4O9 (A = Ba, Sr) ceramics. J Eur Ceram Soc 2021, 41: 4153-4159.
[57]
Tang Y, Zhang ZW, Li J, et al. A3Y2Ge3O12 (A = Ca, Mg): Two novel microwave dielectric ceramics with contrasting τf and Q×f. J Eur Ceram Soc 2020, 40: 3989-3995.
[58]
Lou WC, Song KX, Hussain F, et al. Bond characteristics and microwave dielectric properties of (Li0.5Ga0.5)2+ doped Mg2Al4Si5O18 ceramics. Ceram Int 2020, 46: 28631-28638.
[59]
Wang Y, Tang Y, Li J, et al. Microwave dielectric properties of silico-carnotite Ca3M2Si3O12 (M=Yb,Y) ceramics synthesized via high energy ball milling. Ceram Int 2021, 47: 4831-4837.
[60]
Su CX, Fang L, Ao LY, et al. Structure, Raman spectra and microwave dielectric properties of novel garnet-type Ca3MZrGe3O12 (M = Co, Zn) ceramics. J Asian Ceram Soc 2021, 9: 424-432.
[61]
Zhai YF, Tang Y, Li J, et al. Structure, Raman spectra and properties of two low-ε microwave dielectric ceramics Ca3B2Ge3O12 (B = Al, Ga). Ceram Int 2020, 46: 28710-28715.
[62]
Su CX, Ao LY, Zhai YF, et al. Novel low-permittivity microwave dielectric ceramics in garnet-type Ca4ZrGe3O12. Mater Lett 2020, 275: 128149.
[63]
Li J, Tang Y, Zhang ZW, et al. Two novel garnet Sr3B2Ge3O12 (B = Yb, Ho) microwave dielectric ceramics with low permittivity and high Q. J Eur Ceram Soc 2021, 41: 1317-1323.
[64]
Tan ZY, Song KX, Bafrooei HB, et al. The effects of TiO2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5G application. Ceram Int 2020, 46: 15665-15669.
[65]
Yang AH, Tang Y, Li J, et al. Structure and infrared reflectivity spectra of novel Mg3Ga2GeO8 microwave dielectric ceramic with high Q. Ceram Int 2021, 47: 2450-2455.
[66]
Su CX, Ao LY, Zhang ZW, et al. Crystal structure, Raman spectra and microwave dielectric properties of novel temperature-stable LiYbSiO4 ceramics. Ceram Int 2020, 46: 19996-20003.
[67]
Du K, Wang F, Song XQ, et al. Correlation between crystal structure and dielectric characteristics of Ti4+ substituted CaSnSiO5 ceramics. J Eur Ceram Soc 2021, 41: 2568-2578.
[68]
Du K, Fan J, Zou ZY, et al. Crystal structure, phase compositions, and microwave dielectric properties of malayaite-type Ca1-xSrxSnSiO5 ceramics. J Am Ceram Soc 2020, 103: 6369-6377.
[69]
Du K, Song XQ, Zou ZY, et al. Improved microwave dielectric properties of novel low-permittivity Sn-doped Ca2HfSi4O12 ceramics. Mater Res Bull 2020, 129: 110887.
[70]
Templeton A, Wang XR, Penn SJ, et al. Microwave dielectric loss of titanium oxide. J Am Ceram Soc 2000, 83: 95-100.
[71]
Kim ES, Kang DH. Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi-xO2 (B5+ = Nb, Ta) ceramics. Ceram Int 2008, 34: 883-888.
[72]
Baumgarte A, Blachnik R. Phase relations in the system titaniumdioxide-diniobium-zinc-hexoxide. Mater Res Bull 1992, 27: 1287-1294.
[73]
Yang HY, Zhang SR, Yang HC, et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: A review. Inorg Chem Front 2020, 7: 4711-4753.
[74]
Liao QW, Li LX, Ding X, et al. A new temperature stable microwave dielectric material Mg0.5Zn0.5TiNb2O8. J Am Ceram Soc 2012, 95: 1501-1503.
[75]
Yang HY, Li EZ, Duan SX, et al. Structure, microwave properties and low temperature sintering of Ta2O5 and Co2O3 codoped Zn0.5Ti0.5NbO4 ceramics. Mater Chem Phys 2017, 199: 43-53.
[76]
Li LX, Cai HC, Yu XX, et al. Structure analysis and microwave dielectric properties of CaxZn1-xSn0.08Ti1.92Nb2O10 ceramics. J Alloys Compd 2014, 584: 315-321.
[77]
Yang HY, Zhang SR, Yang HC, et al. Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4- (1-x)Zn0.15Nb0.3Ti0.55O2 ceramics. Inorg Chem 2018, 57: 8264-8275.
[78]
Yang HY, Zhang SR, Yang HC, et al. Effects of ZrO2 substitution on crystal structure and microwave dielectric properties of Zn0.15Nb0.3(Ti1-xZrx)0.55O2 ceramics. Ceram Int 2018, 44: 22710-22717.
[79]
Chen YW, Zhang SR, Yang HY, et al. Bond ionicity, lattice energy and structural evolution of Ta substituted 0.15ZnO-0.15Nb2O5-0.55TiO2 dielectric ceramics. Ceram Int 2019, 45: 8832-8839.
[80]
Ramarao SD, Murthy VRK. Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scripta Mater 2013, 69: 274-277.
[81]
Jiang XS, Pan HL, Feng ZB, et al. Characterization of microwave dielectric materials NiZrNb2O8 based on the chemical bond theory. J Mater Sci: Mater Electron 2016, 27: 10963-10969.
[82]
Pan HL, Feng ZB, Bi JX, et al. Preparation, characterization, and dielectric properties of wolframite- structure MnZrNb2O8 ceramics at microwave frequency. J Alloys Compd 2015, 651: 440-444.
[83]
Xia WS, Yang FY, Zhang GY, et al. New low-dielectric- loss NiZrNb2O8 ceramics for microwave application. J Alloys Compd 2016, 656: 470-475.
[84]
Wu HT, Bi JX, Wang HJ, et al. Sintering characteristics and microwave dielectric properties of low loss ZnZrNb2O8 ceramics achieved by reaction sintering process. J Mater Sci: Mater Electron 2016, 27: 5670-5675.
[85]
Wu HT, Feng ZB, Mei QJ, et al. Correlations of crystal structure, bond energy and microwave dielectric properties of AZrNb2O8 (A = Zn, Co, Mg, Mn) ceramics. J Alloys Compd 2015, 648: 368-373.
[86]
Cheng Y, Zuo RZ, Lv Y. Preparation and microwave dielectric properties of low-loss MgZrNb2O8 ceramics. Ceram Int 2013, 39: 8681-8685.
[87]
Yang HY, Zhang SR, Li YP, et al. Investigations of dielectric properties of wolframite A0.5Zr0.5NbO4 ceramics by bond theory and far-infrared spectroscopy. Ceram Int 2020, 46: 3688-3694.
[88]
Wu HT, Kim ES. Characterization of crystal structure and microwave dielectric properties of AZrNb2O8 (A=Zn,Co, Mg,Mn) ceramics based on complex bond theory. Ceram Int 2016, 42: 5785-5791.
[89]
Zhang Y, Ding SH, Li C, et al. Bond analysis of novel MnZrTa2O8 microwave dielectric ceramics with monoclinic structure. J Mater Sci 2020, 55: 8491-8501.
[90]
Yang HY, Zhang SR, Yang HC, et al. Structure, phase composition, Raman spectra, and microwave dielectric properties of novel Co0.5Zr0.5TaO4 ceramics. Ceram Int 2019, 45: 15445-15450.
[91]
Xia WS, Zhang LY, Wang Y, et al. Extrinsic effects on microwave dielectric properties of high-Q MgZrTa2O8 ceramics. J Mater Sci: Mater Electron 2016, 27: 11325-11330.
[92]
Cai HC, Li LX, Sun H, et al. A microwave dielectric material Mg0.5Zn0.5ZrNb2O8. Mater Lett 2015, 144: 78-81.
[93]
Ye J, Li LX, Sun H, et al. Microstructure and microwave dielectric characteristics of (Zn1-xCox)ZrNb2O8 ceramics. J Mater Sci: Mater Electron 2015, 26: 8954-8959.
[94]
Yang ZL, Pan HL, Jiang XS, et al. Characterization of low loss microwave dielectric materials Zn0.92Co0.08ZrNb2O8 based on the complex chemical bond theory. J Mater Sci: Mater Electron 2017, 28: 1597-1604.
[95]
Pan HL, Liu QQ, Zhang YH, et al. Crystal structure and microwave dielectric characteristics of Co-substituted Zn1-xCoxZrNb2O8 (0 ≤ x ≤ 0.1) ceramics. RSC Adv 2016, 6: 86889-86903.
[96]
Wang SY, Xiao BY, Li JY, et al. Structural evolution, Raman spectra, and microwave dielectric properties of Zr-substituted ZnTiTa2O8 ceramics. J Mater Sci: Mater Electron 2020, 31: 10298-10305.
[97]
Li LX, Zhang S, Ye J, et al. Crystal structure and microwave dielectric properties of the low dielectric loss ZnZr1-xSnxNb2O8 ceramics. Ceram Int 2016, 42: 9157-9161.
[98]
Ye J, Li LX, Li S, et al. A new microwave dielectric material ZnZr0.8Sn0.2Nb2O8. J Mater Sci: Mater Electron 2016, 27: 97-102.
[99]
Xiao M, He SS, Lou J, et al. Structure and microwave dielectric properties of MgZr(Nb1-xSbx)2O8 (0 ≤ x ≤ 0.1) ceramics. J Alloys Compd 2019, 777: 350-357.
[100]
Zhao YG, Zhang P. A novel low loss microwave dielectric ceramic ZnZrNb1.84Sb0.16O8 with wolframite structure. J Mater Sci: Mater Electron 2016, 27: 2933-2937.
[101]
Li LX, Sun H, Lv X, et al. A new microwave dielectric material ZnZrNbTaO8. Mater Lett 2015, 160: 363-365.
[102]
Xiao M, He SS, Meng J, et al. Dependence of microwave dielectric properties on the substitution of isovalent composite ion for Nb-site of MgZrNb2-x(Sn1/2W1/2)xO8 (0 ≤ x ≤ 0.15) ceramics. J Mater Sci: Mater Electron 2019, 30: 18280-18286.
[103]
Xiao M, He SS, Meng J, et al. Bond ionicity, lattice energy, bond energy and the microwave dielectric properties of non-stoichiometric MgZrNb2+xO8+2.5x ceramics. Mater Chem Phys 2020, 242: 122412.
[104]
Zhang J, Zuo RZ, Cheng Y. Relationship of the structural phase transition and microwave dielectric properties in MgZrNb2O8-TiO2 ceramics. Ceram Int 2016, 42: 7681-7689.
[105]
Lyu XS, Li LX, Zhang S, et al. Crystal structure and microwave dielectric properties of novel (1-x)ZnZrNb2O8-xTiO2 ceramics. Mater Lett 2016, 171: 129-132.
[106]
Wu HT, Guo JD, Bi JX, et al. Effect of H3BO3 addition on the sintering behavior and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics. J Alloys Compd 2016, 661: 535-540.
[107]
Wu HT, Mei QJ, Xing CF, et al. Effects of B2O3 addition on sintering behavior and microwave dielectric properties of ixiolite-structure ZnTiNb2O8 ceramics. J Alloys Compd 2016, 679: 26-31.
[108]
Bi JX, Xing CF, Jiang XS, et al. Effect of H3BO3 on sintering behavior and microwave dielectric properties of monoclinal structure ZnZrNb2O8 ceramics. J Mater Sci: Mater Electron 2016, 27: 8055-8061.
[109]
Liao QW, Li LX, Ren X, et al. A new microwave dielectric material Ni0.5Ti0.5NbO4. Mater Lett 2012, 89: 351-353.
[110]
Tseng CF. Microwave dielectric properties of a new Cu0.5Ti0.5NbO4 ceramics. J Eur Ceram Soc 2015, 35: 383-387.
[111]
Tseng CF. Microwave dielectric properties of low loss microwave dielectric ceramics: A0.5Ti0.5NbO4 (A = Zn, Co). J Eur Ceram Soc 2014, 34: 3641-3648.
[112]
Zhang Y, Zhang YC. Microwave dielectric properties of sol-gel derived CoTiNb2O8 ceramics. J Alloys Compd 2016, 683: 86-91.
[113]
Chen TK, Ma WB, Sun QC, et al. The microwave dielectric properties of (Ni,Zn)0.5Ti0.5NbO4 solid solution. Mater Lett 2013, 113: 111-113.
[114]
Zhang Y, Zhang YC, Xiang MQ. Microwave dielectric properties of temperature stable CoTiNb2O8-CoNb2O6 composite ceramics. Mater Lett 2016, 178: 175-177.
[115]
Zhang Y, Ding SH, You L, et al. Temperature stable microwave dielectric ceramic CoTiNb2O8-Zn1.01Nb2O6 with ultra-low dielectric loss. J Electron Mater 2019, 48: 867-872.
[116]
Zhang Y, Zhang YC, Xiang MQ. Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. J Eur Ceram Soc 2016, 36: 1945-1951.
[117]
Li YY, Lu XC, Zhang Y, et al. Characterization of Co0.5(Ti1-xZrx)0.5NbO4 microwave dielectric ceramics based on structural refinement. Ceram Int 2017, 43: 11516-11522.
[118]
Wang J, Lu XC, Li YY, et al. Correlations between microwave dielectric properties and crystal structures of Sb-doped Co0.5Ti0.5NbO4 ceramics. Ceram Int 2020, 46: 3464-3470.
[119]
Kremer RK, Greedan JE. Magnetic ordering in CoTa2O6 and NiTa2O6. J Solid State Chem 1988, 73: 579-582.
[120]
Reimers JN, Greedan JE, Stager CV, et al. Crystal structure and magnetism in CoSb2O6 and CoTa2O6. J Solid State Chem 1989, 83: 20-30.
[121]
Yang HY, Zhang SR, Chen YW, et al. Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorg Chem 2019, 58: 968-976.
[122]
Kumada N, Koike N, Nakanome K, et al. Synthesis of rutile-type solid solution Ni1-xCoxTi(Nb1-yTay)2O8 (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) and its optical property. J Asian Ceram Soc 2017, 5: 284-289.
[123]
Li EZ, Wen QY, Yang HC, et al. Novel temperature stable NiSnTa2O8 microwave dielectric ceramics with trirutile structure. Ceram Int 2020, 46: 6079-6084.
[124]
Baumgarte A, Blachnik R. Isothermal sections in the systems ZnO-AO2-Nb2O5 (A=Ti,Zr,Sn) at 1473 K. J Alloys Compd 1994, 210: 75-81.
[125]
Huan ZL, Sun QC, Ma WB, et al. Crystal structure and microwave dielectric properties of (Zn1-xCox)TiNb2O8 ceramics. J Alloys Compd 2013, 551: 630-635.
[126]
Li LX, Sun H, Lv X, et al. Microstructure and microwave dielectric characteristics of the CaxZn1-xTiNb2O8 temperature stable ceramics. J Mater Sci: Mater Electron 2016, 27: 126-133.
[127]
Liao QW, Li LX, Zhang P, et al. Correlation of crystal structure and microwave dielectric properties for Zn(Ti1-xSnx)Nb2O8 ceramics. Mater Sci Eng: B 2011, 176: 41-44.
[128]
Liao QW, Li LX, Ding X. Phase constitution, structure analysis and microwave dielectric properties of Zn0.5Ti1-xZrxNbO4 ceramics. Solid State Sci 2012, 14: 1385-1391.
[129]
Liao QW, Li LX, Zhang P, et al. Correlation of crystal structure and microwave dielectric properties for ZnTi(Nb1-xTax)2O8 ceramics. Solid State Sci 2011, 13: 1201-1204.
[130]
Liao QW, Li LX, Ren X, et al. New low-loss microwave dielectric material ZnTiNbTaO8. J Am Ceram Soc 2011, 94: 3237-3240.
[131]
Park JH, Choi YJ, Nahm S, et al. Crystal structure and microwave dielectric properties of ZnTi(Nb1-xTax)2O8 ceramics. J Alloys Compd 2011, 509: 6908-6912.
[132]
Liao QW, Li LX. Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: Crystal structure refinement and Raman spectra study. Dalton Trans 2012, 41: 6963.
[133]
Ruan P, Liu P, Guo BC, et al. Microwave dielectric properties of ZnO-Nb2O5-xTiO2 ceramics prepared by reaction-sintering process. J Mater Sci: Mater Electron 2016, 27: 4201-4205.
[134]
Bafrooei HB, Feizpour M, Sayyadi-Shahraki A, et al. High-performance ZnTiNb2O8 microwave dielectric ceramics produced from ZnNb2O6-TiO2 nano powders. J Alloys Compd 2020, 834: 155082.
[135]
Luo WJ, Li LX, Yu SH, et al. Bond theory, terahertz spectra, and dielectric studies in donor-acceptor (Nb-Al) substituted ZnTiNb2O8 system. J Am Ceram Soc 2019, 102: 4612-4620.
[136]
Mei QJ, Li CY, Guo JD, et al. Synthesis, characterization, and microwave dielectric properties of ternary-phase ixiolite-structure MgTiNb2O8 ceramics. Mater Lett 2015, 145: 7-10.
[137]
Lee HJ, Kim IT, Hong KS. Dielectric properties of AB2O6 compounds at microwave frequencies (A = Ca, Mg, Mn, Co, Ni, Zn, and B = Nb, Ta). Jpn J Appl Phys 1997, 36: L1318-L1320.
[138]
Blasse G. Qualitative approach to the structural differences between some mixed metal oxides containing Sb5+, Nb5+ and Ta5+. J Inorg Nucl Chem 1964, 26: 1191-1199.
[139]
Lee HJ, Hong KS, Kim SJ, et al. Dielectric properties OF MNb2O6 compounds (where M = Ca, Mn, Co, Ni, or Zn). Mater Res Bull 1997, 32: 847-855.
[140]
Pullar RC, Breeze JD, Alford NM. Characterization and microwave dielectric properties of M2+Nb2O6 ceramics. J Am Ceram Soc 2005, 88: 2466-2471.
[141]
Chen YC, Weng MZ, Chang KC. Effect of sintering temperature and time on microwave dielectric properties of CaNb2O6 ceramics. J Mater Sci: Mater Electron 2014, 25: 844-851.
[142]
Wu HT, Jiang YS, Wu WB, et al. Synthesis and microwave dielectric properties of columbite-structure MgNb2O6 ceramics by aqueous sol-gel technique. J Electroceramics 2012, 28: 191-196.
[143]
Xia WS, Li LX, Ji LJ, et al. Phase evolution, bond valence and microwave characterization of (Zn1-xNix)Ta2O6 ceramics. Mater Lett 2012, 66: 296-298.
[144]
Xia WS, Li LX, Ning PF, et al. Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn(Ta1-xNbx)2O6 ceramics. J Am Ceram Soc 2012, 95: 2587-2592.
[145]
Xia WS, Zhang GY, Shi LW, et al. Enhanced microwave dielectric properties of ZnTa2O6 ceramics with Sb5+ ion substitution. Mater Lett 2014, 124: 64-66.
[146]
Sp W, Jh L. Mg-substituted ZnNb2O6-TiO2 composite ceramics for RF/microwaves ceramic capacitors. J Alloys Compd 2011, 509: 8126-8129.
[147]
Fu BJ, Zhang YC, Yue H. Microwave dielectric properties of (1-x)ZnTa2O6-xMgNb2O6 ceramics. Ceram Int 2013, 39: 3789-3793.
[148]
Zhang YC, You CY, Fu BJ, et al. Tailoring of microwave dielectric properties in (1-x)ZnTa2O6-xNiNb2O6 ceramics. Ferroelectrics 2013, 451: 54-61.
[149]
Yu SQ, Tang B, Zhang SR, et al. Phase structure and microwave dielectric properties of Mn-doped (1-x)ZrTi2O6-xZnNb2O6 (x = 0.13-0.53) ceramics. J Mater Sci: Mater Electron 2013, 24: 418-422.
[150]
Liu XC, Deng JP. Phase structure and dielectric property of the ZnNb2O6-(Mg0.3Zn0.7)TiO3 multiphase ceramics. J Mater Sci: Mater Electron 2012, 23: 506-510.
[151]
Yan Z, Huang JL, Gu YJ, et al. Effects of V2O5 addition on the microstructure and microwave dielectric properties of ZnNb2O6 ceramics. Adv Mater Res 2012, 476-478: 940-943.
[152]
Wu HT, Jiang YS, Yue YL. Low-temperature synthesis and microwave dielectric properties of trirutile-structure MgTa2O6 ceramics by aqueous sol-gel process. Ceram Int 2012, 38: 5151-5156.
[153]
Liu LT, Matusevich A, Garg C, et al. The dominance of paramagnetic loss in microwave dielectric ceramics at cryogenic temperatures. Appl Phys Lett 2012, 101: 252901.
[154]
Park JH, Nahm S, Park JG. Crystal structure and microwave dielectric properties of (1-x)ZnTa2O6-xTiO2 ceramics. J Alloys Compd 2012, 537: 221-226.
[155]
Shahgholi N, Asadian K, Ebadzadeh T. Microstructural and microwave dielectric properties of ZnNb2O6 ceramics prepared through microwave sintering. Ceram Int 2014, 40: 14335-14339.
[156]
Yang HY, Zhang SR, Yang HC, et al. Intrinsic dielectric properties of columbite ZnNb2O6 ceramics studied by P-V-L bond theory and Infrared spectroscopy. J Am Ceram Soc 2019, 102: 5365-5374.
[157]
Sebastian MT, Solomon S, Ratheesh R, et al. Preparation, characterization, and microwave properties of RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) dielectric ceramics. J Am Ceram Soc 2001, 84: 1487-1489.
[158]
Surendran KP, Solomon S, Varma MR, et al. Microwave dielectric properties of RETiTaO6 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) ceramics. J Mater Res 2002, 17: 2561-2566.
[159]
Lei Y, Reaney IM, Liu YC, et al. Microwave dielectric properties and microstructures of RETiNbO6 (RE = La, Sm and Y). Adv Mater Res 2011, 197-198: 285-289.
[160]
Zhang J, Zuo RZ. A novel self-composite property-tunable LaTiNbO6 microwave dielectric ceramic. Mater Res Bull 2016, 83: 568-572.
[161]
Zhang J, Zuo RZ. Sintering behavior, structural phase transition, and microwave dielectric properties of La1-xZnxTiNbO6-x/2 ceramics. J Am Ceram Soc 2017, 100: 4362-4368.
[162]
Zhang J, Zuo RZ. Phase structural transition and microwave dielectric properties in isovalently substituted La1-xLnxTiNbO6 (Ln = Ce, Sm) ceramics. Ceram Int 2017, 43: 7065-7072.
[163]
Zhang J, Zuo RZ. Octahedral distortion, phase structural stability, and microwave dielectric properties in equivalently substituted LaTiNbO6 ceramics. J Am Ceram Soc 2017, 100: 5249-5258.
[164]
Zhang J, Zuo RZ. Raman scattering and infrared reflectivity study of orthorhombic/monoclinic LaTiNbO6 microwave dielectric ceramics by A/B-site substitution. Ceram Int 2018, 44: 16191-16198.
[165]
John F, Solomon S. Dielectric and optical properties of Ln0.8Lu0.2TiNbO6 (Ln = Ce, Pr, Nd & Sm) ceramics. Phys Lett A 2020, 384: 126731.
[166]
Kim DW, Kwon DK, Yoon SH, et al. Microwave dielectric properties of rare-earth ortho-niobates with ferroelasticity. J Am Ceram Soc 2006, 89: 3861-3864.
[167]
Zhang P, Song ZK, Wang Y, et al. Effect of ion substitution for Nd3+ based on structural characteristic on the microwave dielectric properties of NdNbO4 ceramic system. J Am Ceram Soc 2014, 97: 976-981.
[168]
Song ZK, Zhang P, Wang Y, et al. Improved quality factor of NdNbO4 microwave dielectric ceramic by Mn2+ substitution. J Alloys Compd 2014, 583: 546-549.
[169]
Chen YH, Wang H, Pang LX, et al. Effect of Zn2+ substitution on sintering behavior and dielectric properties of NdNbO4 ceramics. Ferroelectrics 2010, 407: 61-68.
[170]
Xiao M, Gu QQ, Zhou ZQ, et al. Study of the microwave dielectric properties of (La1-xSmx)NbO4 (x = 0-0.10) ceramics via bond valence and packing fraction. J Am Ceram Soc 2017, 100: 3952-3960.
[171]
Zhang P, Zhao YG. Influence of Sm3+ substitutions for Nd3+ on the microwave dielectric properties of (Nd1-xSmx)NbO4 (x = 0.02-0.15) ceramics. J Alloys Compd 2016, 654: 240-245.
[172]
Zhao YG, Zhang P. Complex chemical bond theory, Raman spectra and microwave dielectric properties of low loss ceramics NdNbO4-xAl2O3. J Mater Sci: Mater Electron 2016, 27: 2511-2522.
[173]
Zhang P, Zhao YG. New temperature stable (Nd1-xLax)1.02Nb0.988O4 microwave dielectric ceramics. Mater Lett 2015, 161: 620-623.
[174]
Zhang P, Zhao YG, Li LX. The correlations among bond ionicity, lattice energy and microwave dielectric properties of (Nd1-xLax)NbO4 ceramics. Phys Chem Chem Phys 2015, 17: 16692-16698.
[175]
Pang LX, Zhou D. Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J Am Ceram Soc 2019, 102: 2278-2282.
[176]
Zhang P, Zhao Y, Liu J, et al. Correlation of crystal structure and microwave dielectric properties of Nd1.02(Nb1-xTax)0.988O4 ceramic. Dalton Trans 2015, 44: 5053-5057.
[177]
Zhang P, Zhao YG, Liu J, et al. Enhanced microwave dielectric properties of NdNbO4 ceramic by Ta5+ substitution. J Alloys Compd 2015, 640: 90-94.
[178]
Zhang P, Zhao YG, Wang XY. The relationship between bond ionicity, lattice energy, coefficient of thermal expansion and microwave dielectric properties of Nd(Nb1-xSbx)O4 ceramics. Dalton Trans 2015, 44: 10932-10938.
[179]
Zhang P, Zhao YG, Wang XY. The correlations between electronic polarizability, packing fraction, bond energy and microwave dielectric properties of Nd(Nb1-xSbx)O4 ceramics. J Alloys Compd 2015, 644: 621-625.
[180]
Yang HC, Zhang SR, Yang HY, et al. Influence of (Al1/3W2/3)5+ co-substitution for Nb5+ in NdNbO4 and the impact on the crystal structure and microwave dielectric properties. Dalton Trans 2018, 47: 15808-15815.
[181]
Yang HC, Zhang SR, Yang HY, et al. Structure stability, bond characteristics and microwave dielectric properties of co-substituted NdNbO4 ceramics. Ceram Int 2019, 45: 3620-3626.
[182]
Yang HC, Zhang SR, Yang HY, et al. NdNb1-x(Mg1/4W3/4)xO4 (0.02 ≤ x ≤ 0.06) solid solution characterized by infrared spectrum and complex chemical theory. J Alloys Compd 2019, 787: 358-366.
[183]
Yang HC, Zhang SR, Yang HY, et al. Bond characteristics, vibrational spectrum and optimized microwave dielectric properties of chemically substituted NdNbO4. Ceram Int 2019, 45: 16940-16947.
[184]
Zhang P, Song ZK, Wang Y, et al. Effect of CaTiO3 addition on microwave dielectric properties of NdNbO4 ceramics as multi-function material. J Alloys Compd 2013, 581: 741-746.
[185]
Zhang P, Wang T, Xia WS, et al. Microwave dielectric properties of a new ceramic system NdNbO4 with CaF2 addition. J Alloys Compd 2012, 535: 1-4.
[186]
Peng Y, Xia WS, Yi CJ, et al. Effects of MgO additive on microwave dielectric properties of NdNbO4 ceramics. J Mater Sci: Mater Electron 2020, 31: 785-790.
[187]
Liu LT, Chen YG, Feng ZB, et al. Crystal structure, infrared spectra, and microwave dielectric properties of the EuNbO4 ceramic. Ceram Int 2021, 47: 4321-4326.
[188]
Guo D, Zhou D, Li WB, et al. Phase evolution, crystal structure, and microwave dielectric properties of water-insoluble (1-x)LaNbO4-xLaVO4 (0 ≤ x ≤ 0.9) ceramics. Inorg Chem 2017, 56: 9321-9329.
[189]
Tang TL, Xia WS, Zhang B, et al. Optimization on quality factor of LaNbO4 microwave dielectric ceramics. J Mater Sci: Mater Electron 2019, 30: 15293-15298.
[190]
Chen JW, Fang L, Li J, et al. Packing fraction, bond valence and crystal structure of AVO4 (A = Eu, Y) microwave dielectric ceramics with low permittivity. J Mater Sci: Mater Electron 2020, 31: 19180-19187.
[191]
Zhou D, Guo HH, Fu MS, et al. Anomalous dielectric behaviour during the monoclinic to tetragonal phase transition in La(Nb0.9V0.1)O4. Inorg Chem Front 2021, 8: 156-163.
[192]
Deng JY, Xia WS, Zhang WH, et al. Optimization of sintering behavior and microwave dielectric properties of LaNbO4 ceramics with NiO/CoO additive. J Alloys Compd 2021, 859: 158378.
[193]
Chen L, Hu MY, Wu P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J Am Ceram Soc 2019, 102: 4809-4821.
[194]
Wu P, Hu MY, Chen L, et al. The effect of ZrO2 alloying on the microstructures and thermal properties of DyTaO4 for high-temperature application. J Am Ceram Soc 2019, 102: 889-895.
[195]
Wu P, Hu MY, Chen L, et al. Investigation on microstructures and thermo-physical properties of ferroelastic (Y1-xDyx)TaO4 ceramics. Materialia 2018, 4: 478-486.
[196]
Wu P, Chong XY, Feng J. Effect of Al3+ doping on mechanical and thermal properties of DyTaO4 as promising thermal barrier coating application. J Am Ceram Soc 2018, 101: 1818-1823.
[197]
Ma Z, Zheng J, Wang S, et al. First-principle calculations of crystal structures, electronic structures, and optical properties of RETaO4 (RE = Y, La, Sm, Eu, Dy, Er). Opt Eng 2018, 57: 017107.
[198]
Devesa S, Teixeira SS, Rooney AP, et al. Structural, morphological and dielectric properties of ErNbO4 prepared by the sol-gel method. J Phys Chem Solids 2020, 146: 109619.
[199]
Nedelcu L, Geambasu CD, Enculescu M, et al. Intrinsic dielectric loss in Zr0.8Sn0.2TiO4 ceramics investigated by terahertz time domain spectroscopy. Materials 2021, 14: 216.
[200]
Kumada N, Taki K, Kinomura N. Single crystal structure refinement of a magnesium niobium oxide: Mg4Nb2O9. Mater Res Bull 2000, 35: 1017-1021.
[201]
Ogawa H, Kan A, Ishihara S, et al. Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss. J Eur Ceram Soc 2003, 23: 2485-2488.
[202]
Wu HT, Li LX, Zou Q, et al. Synthesis, characterization, and microwave dielectric properties of Mg4Nb2O9 ceramics produced through the aqueous sol-gel process. J Alloys Compd 2011, 509: 2232-2237.
[203]
Mei QJ, Li CY, Guo JD, et al. Influence of sintering temperature on dielectric properties and crystal structure of corundum-structured Mg4Ta2O9 ceramics at microwave frequencies. Ceram Int 2013, 39: 9145-9149.
[204]
Wu HT, Wu WB, Yue YL, et al. Synthesis and microwave dielectric properties of pseudobrookite-type structure Mg5Nb4O15 ceramics by aqueous sol-gel technique. Ceram Int 2012, 38: 4271-4276.
[205]
Kamba S, Petzelt J, Buixaderas E, et al. High frequency dielectric properties of A5B4O15 microwave ceramics. J Appl Phys 2001, 89: 3900-3906.
[206]
Guo JD, Li CY, Mei QJ, et al. Effect of MgO excess on structure and microwave dielectric properties of Mg4Nb2O9 ceramics. Mater Technol 2015, 30: 134-137.
[207]
Yang T, Han ZX, Liu P, et al. Microwave dielectric properties of Mg4Nb2O9 ceramics with excess Mg(OH)2 produced by a reaction-sintering process. Ceram Int 2015, 41: S572-S575.
[208]
Li BJ, Wang SY, Lin SH, et al. Dielectric properties and crystal structure of (Mg0.95Ni0.05)4(Nb1-xTax)2O9 ceramics. J Ceram Soc Japan 2016, 124: 140-144.
[209]
Kim JH, Kim ES. Microwave dielectric properties of Mg4Nb2O9-based ceramics with (BxW1-x)5+ substitutions at Nb5+ sites (B = Li, Mg, Al, Ti). Ceram Int 2017, 43: S339-S342.
[210]
Li BJ, Wang SY, Chiu CY, et al. Dielectric properties and mixture behavior of y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3 ceramic system at microwave frequency. J Alloys Compd 2016, 661: 357-362.
[211]
Pakawanit P, Ananta S. Influence of sintering temperature on densification and microstructure of Zn3Nb2O8 ceramics derived from nanopowders. Adv Mater Res 2011, 194-196: 656-659.
[212]
Amonpattaratkit P, Ngamjarurojana A, Ananta S. Microstructure and dielectric properties of Zn3Nb2O8 ceramics prepared by a two-stage sintering method. Ceram Int 2013, 39: S331-S334.
[213]
Bian JJ, Wang L, Yuan LL. Microwave dielectric properties of Li2+xTi1-4xNb3xO3 (0 ≤ x ≤ 0.1). Mater Sci Eng: B 2009, 164: 96-100.
[214]
Bian JJ, Dong YF. Sintering behavior, microstructure and microwave dielectric properties of Li2+xTiO3 (0 ≤ x ≤ 0.2). Mater Sci Eng: B 2011, 176: 147-151.
[215]
Hao YZ, Zhang QL, Zhang J, et al. Enhanced sintering characteristics and microwave dielectric properties of Li2TiO3 due to nano-size and nonstoichiometry effect. J Mater Chem 2012, 22: 23885.
[216]
Izquierdo G, West AR. Phase equilibria in the system Li2O-TiO2. Mater Res Bull 1980, 15: 1655-1660.
[217]
Mikkelsen JC. Pseudobinary phase relations of Li2Ti3O7. J Am Ceram Soc 1980, 63: 331-335.
[218]
Chen GH, Xu HR, Yuan CL. Microstructure and microwave dielectric properties of Li2Ti1-x(Zn1/3Nb2/3)xO3 ceramics. Ceram Int 2013, 39: 4887-4892.
[219]
Guo HH, Zhou D, Pang LX, et al. Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss. J Materiomics 2018, 4: 368-382.
[220]
Chen WS, Hung ML, Hsu CH. Effects of (Co1/3Nb2/3)4+ substitution on microstructure and microwave dielectric properties of Li2Ti1-x(Co1/3Nb2/3)xO3 ceramics for applications in ceramic antenna. J Asian Ceram Soc 2021, 9: 433-442.
[221]
Guo HH, Fu MS, Zhou D, et al. Design of a high-efficiency and -gain antenna using novel low-loss, temperature-stable Li2Ti1-x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Appl Mater Interfaces 2021, 13: 912-923.
[222]
Bian JJ, Dong YF. New high Q microwave dielectric ceramics with rock salt structures: (1-x)Li2TiO3+xMgO system (0 ≤ x ≤ 0.5). J Eur Ceram Soc 2010, 30: 325-330.
[223]
Huang CL, Tseng YW, Chen JY. High-Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applications. J Eur Ceram Soc 2012, 32: 3287-3295.
[224]
Bian JJ, Liang Z, Wang L. Structural evolution and microwave dielectric properties of Li(3-3x)M4xNb(1-x)O4 (M = Mg, Zn; 0 ≤ x ≤ 0.9). J Am Ceram Soc 2011, 94: 1447-1453.
[225]
Wu NX, Bian JJ. Microstructure and microwave dielectric properties of (1-y)Li3NbO4+yLi2TiO3(Li2SnO3) ceramics. Mater Sci Eng: B 2012, 177: 1793-1798.
[226]
Tseng YW, Chen JY, Kuo YC, et al. Low-loss microwave dielectrics using rock salt oxide Li2MgTiO4. J Alloys Compd 2011, 509: L308-L310.
[227]
Chen XL, Zhou HF, Fang L, et al. Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. J Alloys Compd 2011, 509: 5829-5832.
[228]
Fang L, Chu DJ, Zhou HF, et al. Microwave dielectric properties and low temperature sintering behavior of Li2CoTi3O8 ceramic. J Alloys Compd 2011, 509: 1880-1884.
[229]
Taghipour Armaki H, Taheri-Nassaj E, Bari M. Phase analysis and improvement of quality factor of Li2ZnTi3O8 ceramics by annealing treatment. J Alloys Compd 2013, 581: 757-761.
[230]
Lyu XS, Li LX, Cai HC, et al. A new microwave dielectric material LiNi0.5Ti0.5O2. Ceram Int 2015, 41: 9168-9171.
[231]
Zhou HF, Liu XB, Chen XL, et al. ZnLi2/3Ti4/3O4: A new low loss spinel microwave dielectric ceramic. J Eur Ceram Soc 2012, 32: 261-265.
[232]
Zhou HF, Liu XB, Chen XL, et al. Preparation, phase structure and microwave dielectric properties of a new low cost MgLi2/3Ti4/3O4 compound. Mater Chem Phys 2012, 137: 22-25.
[233]
Zhou HF, Liu XB, Chen XL, et al. Preparation, phase structure and microwave dielectric properties of CoLi2/3Ti4/3O4 ceramic. Mater Res Bull 2012, 47: 1278-1280.
[234]
Bi JX, Xing CF, Jiang XS, et al. Characterization and microwave dielectric properties of new low loss Li2MgZrO4 ceramics. Mater Lett 2016, 184: 269-272.
[235]
Fu ZF, Liu P, Ma JL, et al. New high Q low-fired Li2Mg3TiO6 microwave dielectric ceramics with rock salt structure. Mater Lett 2016, 164: 436-439.
[236]
Zhou HF, Gong JZ, Fan GC, et al. Enhanced sintering ability and microwave dielectric properties of LiZnNbO4 ceramics with pretreatment of raw materials. J Alloys Compd 2016, 665: 113-118.
[237]
Su CH, Huang CL. Investigation of the microwave dielectric properties of Li2ZnTi5O12 ceramics. J Alloys Compd 2016, 678: 102-108.
[238]
Liu QQ, Pan HL, Tao WH, et al. New rock salt structure dielectric material Li2Ni3TiO6 at microwave frequency. J Mater Sci: Mater Electron 2017, 28: 9893-9899.
[239]
Bi JX, Li CC, Zhang YH, et al. Crystal structure, infrared spectra and microwave dielectric properties of ultra low-loss Li2Mg4TiO7 ceramics. Mater Lett 2017, 196: 128-131.
[240]
Pan HL, Wu HT. Crystal structure, infrared spectra and microwave dielectric properties of new ultra low-loss Li6Mg7Ti3O16 ceramics. Ceram Int 2017, 43: 14484-14487.
[241]
Zuo RZ, Qi H, Qin F, et al. A new Li-based ceramic of Li4MgSn2O7: Synthesis, phase evolution and microwave dielectric properties. J Eur Ceram Soc 2018, 38: 5442-5447.
[242]
Jiang PB, Hu YD, Bao SX, et al. A novel microwave dielectric ceramic Li2NiZrO4 with rock salt structure. RSC Adv 2019, 9: 32936-32939.
[243]
Wu HT, Kim ES. Characterization of low loss microwave dielectric materials Li3Mg2NbO6 based on the chemical bond theory. J Alloys Compd 2016, 669: 134-140.
[244]
Pei CJ, Hou CD, Li Y, et al. A low εr and temperature-stable Li3Mg2SbO6 microwave dielectric ceramics. J Alloys Compd 2019, 792: 46-49.
[245]
Li J, Zhang ZW, Tian YF, et al. Crystal structure and microwave dielectric properties of a novel rock-salt type Li3MgNbO5 ceramic. J Mater Sci 2020, 55: 15643-15652.
[246]
Zhang X, Jiang ZH, Tang B, et al. A new series of low-loss multicomponent oxide microwave dielectrics with a rock salt structure: Li5MgABO8 (A = Ti, Sn; B = Nb, Ta). Ceram Int 2020, 46: 10332-10340.
[247]
Zhang X, Fang ZX, Yang HY, et al. Lattice evolution, ordering transformation and microwave dielectric properties of rock-salt Li3+xMg2-2xNb1-xTi2xO6 solid- solution system: A newly developed pseudo ternary phase diagram. Acta Mater 2021, 206: 116636.
[248]
Gu FF, Chen GH, Li XQ, et al. Structural and microwave dielectric properties of the (1-x)Li3NbO4-xCa0.8Sr0.2TiO3 thermally stable ceramics. Mater Chem Phys 2015, 167: 354-359.
[249]
Yao GG, Hu XS, Tian XL, et al. Synthesis and microwave dielectric properties of Li2MgTiO4 ceramics. Ceram Int 2015, 41: S563-S566.
[250]
Du H, Li CC, Liu FL, et al. Influence of ionic substitution on the microwave dielectric properties of Li2Mg0.95A0.05TiO4 (A = Ni, Co, Mn, Zn) ceramics. J Mater Sci: Mater Electron 2017, 28: 8304-8308.
[251]
Wang P, Wang YR, Bi JX, et al. Effects of Zn2+ substitution on the crystal structure, Raman spectra, bond energy and microwave dielectric properties of Li2MgTiO4 ceramics. J Alloys Compd 2017, 721: 143-148.
[252]
Xing CF, Liu QQ, Wu HT. Sintering characteristics, crystal structure, and microwave dielectric properties of Li2(Mg0.9A0.1)4TiO7 (A = Co2+, Ni2+, Mg2+, Zn2+, Ca2+). J Mater Sci: Mater Electron 2019, 30: 302-307.
[253]
Xing CF, Wu HT. Crystal structure and microwave dielectric properties of Li4Mg3[Ti1-x(Mg1/3Ta2/3)x]2O9 (x = 0-0.4) ceramics. Ceram Int 2019, 45: 4142-4145.
[254]
Lu XP, Zheng Y, Huang Q, et al. Correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics. J Electron Mater 2015, 44: 4243-4249.
[255]
Zhou HF, Wang N, Gong JZ, et al. Processing of low-fired glass-free Li2MgTi3O8 microwave dielectric ceramics. J Alloys Compd 2016, 688: 8-13.
[256]
Tajik Z, Sayyadi-Shahraki A, Taheri-Nassaj E, et al. Effect of synthesis and sintering technique on the long-range 1:3 cation ordering and microwave dielectric loss of Li2ZnTi3O8 ceramics. Ceram Int 2020, 46: 20905-20913.
[257]
Huang CL, Su CH, Chang CM. High Q microwave dielectric ceramics in the Li2(Zn1-xAx)Ti3O8 (A = Mg, Co; x = 0.02-0.1) system. J Am Ceram Soc 2011, 94: 4146-4149.
[258]
Fang L, Chu DJ, Zhou HF, et al. Microwave dielectric properties of temperature stable Li2ZnxCo1-xTi3O8 ceramics. J Alloys Compd 2011, 509: 8840-8844.
[259]
Wang LJ, Sun QC, Ma WB, et al. Microwave dielectric characteristics of Li2(Mg0.94M0.06)Ti3O8 (M = Zn, Co, and Mn) ceramics. Ceram Int 2013, 39: 5185-5190.
[260]
Ren HS, Wu ZL, He F, et al. Investigation on phase and microstructures of a temperature stable high-Q Li2Zn0.95Sr0.05Ti3O8 microwave dielectric ceramic. J Mater Sci: Mater Electron 2019, 30: 8154-8159.
[261]
Ren HS, Xie TY, Wu ZL, et al. Crystal structure, phase evolution and dielectric properties in the Li2ZnTi3O8- SrTiO3 system as temperature stable high-Q material. J Alloys Compd 2019, 797: 18-25.
[262]
Tian S, Liao ZL, Wang H, et al. Influence of CaxSr1-x (0 ≤ x ≤ 1) substitution for Zn on microwave dielectric properties of Li2ZnTi3O8 ceramic as temperature stable materials. J Wuhan Univ Technol Mater Sci Ed 2020, 35: 686-690.
[263]
Liu XB, Zhou HF, Chen XL, et al. Phase structure and microwave dielectric properties of (1-x)Li2Zn3Ti4O12- xTiO2 ceramics. J Alloys Compd 2012, 515: 22-25.
[264]
Wang W, Zhou HF, Chen XL, et al. Crystal structure and optimized microwave dielectric properties of (1-x)LiZn0.5Ti1.5O4-xTiO2 ceramics for application in dielectric resonator. J Mater Sci: Mater Electron 2013, 24: 2641-2645.
[265]
Bari M, Taheri-Nassaj E, Taghipour-Armaki H. Phase evolution, microstructure, and microwave dielectric properties of reaction-sintered Li2ZnTi3O8 ceramic obtained using nanosized TiO2 reagent. J Electron Mater 2015, 44: 3670-3676.
[266]
Bari M, Taheri-Nassaj E, Taghipour-Armaki H. Role of nano- and micron-sized particles of TiO2 additive on microwave dielectric properties of Li2ZnTi3O8- 4 wt%TiO2 ceramics. J Am Ceram Soc 2013, 96: 3737-3741.
[267]
Zhang P, Wang Y, Liu J, et al. A high improved quality factor of Li2MgTi3O8 microwave dielectric ceramics system. Mater Lett 2014, 123: 195-197.
[268]
Zhang P, Zhao YG. High-Q microwave dielectric materials of Li2ZnTi3O8 ceramics with SnO2 additive. Ceram Int 2016, 42: 2882-2886.
[269]
Zhang YD, Han J, Liang R, et al. Novel temperature stable Li2TiO3-based microwave dielectric ceramics with low loss. Mater Lett 2015, 153: 118-120.
[270]
Li W, Li JH, Shen JX, et al. Crystal structure, Raman spectra, and microwave dielectric properties of high-Q Li2ZnTi3O8 systems with Nb2O5 addition. Ceram Int 2021, 47: 8601-8609.
[271]
Zhang BW, Li LX, Luo WJ. Oxygen vacancy regulation and its high frequency response mechanism in microwave ceramics. J Mater Chem C 2018, 6: 11023-11034.
[272]
Zhang P, Xie H, Zhao YG, et al. Microwave dielectric properties of low loss Li2(Mg0.95A0.05)3TiO6(A = Ca2+, Ni2+, Zn2+, Mn2+) ceramics system. J Alloys Compd 2016, 689: 246-249.
[273]
Shi XL, Zhang HW, Zhang DN, et al. Structure and microwave dielectric properties of Li2Mg3Ti1-x(Al1/2Nb1/2)xO6 ceramics. Ceram Int 2020, 46: 13737-13742.
[274]
Zhan Y, Li LX. Low-permittivity and high-Q value Li2Mg3Ti1-x(Zn1/3Nb2/3)xO6 microwave dielectric ceramics for microstrip antenna applications in 5G millimeter wave. J Alloys Compd 2021, 857: 157608.
[275]
Fang ZX, Tang B, Si F, et al. Phase evolution, structure and microwave dielectric properties of Li2+xMg3SnO6 (x = 0.00-0.12) ceramics. Ceram Int 2017, 43: 13645-13652.
[276]
Fang ZX, Tang B, Si F, et al. Temperature stable and high-Q microwave dielectric ceramics in the Li2Mg3-xCaxTiO6 system (x = 0.00-0.18). Ceram Int 2017, 43: 1682-1687.
[277]
Fang ZX, Tang B, Yuan Y, et al. Structure and microwave dielectric properties of the Li2/3(1-x)Sn1/3(1-x)MgxO systems (x = 0-4/7). J Am Ceram Soc 2018, 101: 252-264.
[278]
Xie TY, Zhang LZ, Ren HS, et al. A novel temperature- stable and low-loss microwave dielectric using Ca0.8Sr0.2TiO3-modified Li2Mg3TiO6 ceramics. J Mater Sci: Mater Electron 2017, 28: 13705-13709.
[279]
Zhou HF, Tan XH, Huang J, et al. Sintering behavior, phase evolution and microwave dielectric properties of thermally stable Li2O-3MgO-mTiO2 ceramics (1 ≤ m ≤ 6). Ceram Int 2017, 43: 3688-3692.
[280]
Pan HL, Xing CF, Jiang XS, et al. Characterization on low loss dielectric Li2MgTiO4 ceramics based on chemical bond theory at microwave frequency. J Alloys Compd 2016, 688: 416-421.
[281]
Bi JX, Niu YJ, Wu HT. Li4Mg3Ti2O9: A novel low-loss microwave dielectric ceramic for LTCC applications. Ceram Int 2017, 43: 7522-7530.
[282]
Pan HL, Cheng L, Wu HT. Relationships between crystal structure and microwave dielectric properties of Li2(Mg1-xCox)3TiO6 (0 ≤ x ≤ 0.4) ceramics. Ceram Int 2017, 43: 15018-15026.
[283]
Fu ZF, Liu P, Ma JL, et al. Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J Eur Ceram Soc 2016, 36: 625-629.
[284]
Bi JX, Xing CF, Yang CH, et al. Phase composition, microstructure and microwave dielectric properties of rock salt structured Li2ZrO3-MgO ceramics. J Eur Ceram Soc 2018, 38: 3840-3846.
[285]
Liu LT, Wang LG, Du JL, et al. Effects of (Mg1/3Sb2/3)4+ substitutions on the sintering behaviors and microwave dielectric properties of Li2Mg4Zr1-x(Mg1/3Sb2/3)xO7 ceramics. J Alloys Compd 2021, 865: 158942.
[286]
Shi XL, Zhang HW, Zhang DN, et al. Effect of zirconium deficiency on structure characteristics, morphology and microwave dielectric properties of Li2Mg3Zr1-xO6 ceramics. Ceram Int 2021, 47: 12567-12573.
[287]
Wang G, Zhang DN, Gan GW, et al. Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceram Int 2019, 45: 19766-19770.
[288]
Xing CF, Bi JX, Wu HT. Effect of Co-substitution on microwave dielectric properties of Li3(Mg1-xCox)2NbO6 (0.00 ≤ x ≤ 0.10) ceramics. J Alloys Compd 2017, 719: 58-62.
[289]
Zhang P, Liu L, Xiao M, et al. A novel temperature stable and high Q microwave dielectric ceramic in Li3(Mg1-xMnx)2NbO6 system. J Mater Sci: Mater Electron 2017, 28: 12220-12225.
[290]
Zhang P, Sun KX, Xiao M, et al. Crystal structure, densification, and microwave dielectric properties of Li3Mg2(Nb(1-x)Mox)O6+x/2 (0 ≤ x ≤ 0.08) ceramics. J Am Ceram Soc 2019, 102: 4127-4135.
[291]
Wang G, Zhang DN, Huang X, et al. Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics. J Am Ceram Soc 2020, 103: 214-223.
[292]
Pei CJ, Li Y, Hou CD, et al. Sintering behavior and microwave dielectric properties of V5+ substituted Li3Mg2SbO6 ceramics. J Mater Sci: Mater Electron 2019, 30: 14495-14499.
[293]
Pei CJ, Tan JJ, Li Y, et al. Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1-xO6 ceramics. J Adv Ceram 2020, 9: 588-594.
[294]
Li H, Zhang PC, Chen XQ, et al. Effect of Zn2+ substitution for Mg2+ in Li3Mg2SbO6 and the impact on the bond characteristics and microwave dielectric properties. J Alloys Compd 2020, 832: 155043.
[295]
Zhang P, Hao MM, Mao XR, et al. Effects of W6+ substitution on crystal structure and microwave dielectric properties of Li3Mg2NbO6 ceramics. Ceram Int 2020, 46: 21336-21342.
[296]
Wang G, Zhang DN, Li J, et al. Crystal structure, bond energy, Raman spectra, and microwave dielectric properties of Ti-doped Li3Mg2NbO6 ceramics. J Am Ceram Soc 2020, 103: 4321-4332.
[297]
Zhang P, Sun KX, Mao XR, et al. Crystal structures and high microwave dielectric properties in Li+/Ti4+ ions co-doped Li3Mg2NbO6 ceramics. Ceram Int 2020, 46: 8097-8103.
[298]
Zhang P, Hao MM, Xiao M. Microwave dielectric properties of Li3Mg2NbO6-based ceramics with (MxW1-x)5+ (M = Li+, Mg2+, Al3+, Ti4+) substitutions at Nb5+ sites. J Alloys Compd 2021, 853: 157386.
[299]
Wang G, Zhang HW, Huang X, et al. Crystal structure and enhanced microwave dielectric properties of non- stoichiometric Li3Mg2+xNbO6 ceramics. Mater Lett 2019, 235: 84-87.
[300]
Chu X, Gan L, Ren SQ, et al. Low-loss and temperature-stable (1-x)Li2TiO3-xLi3Mg2NbO6 microwave dielectric ceramics. Ceram Int 2020, 46: 8413-8419.
[301]
Zhang X, Tang B, Fang ZX, et al. Structural evolution and microwave dielectric properties of a novel Li3Mg2-x/3Nb1-2x/3TixO6 system with a rock salt structure. Inorg Chem Front 2018, 5: 3113-3125.
[302]
Zhang X, Zhang X, Fang ZX, et al. Effects of lattice evolution and ordering on the microwave dielectric properties of tin-modified Li3Mg2NbO6-based ceramics. J Phys Chem C 2020, 124: 22069-22081.
[303]
Qin F, Zhang S, Zuo RZ. Ultralow-loss and thermally stable Li4MgSn2-1.25xNbxO7 microwave dielectric ceramics. J Mater Sci: Mater Electron 2020, 31: 5567-5572.
[304]
Li L, Chen XM. Frequency-dependent Qf value of low-loss Ba2Ti9O20 ceramics at microwave frequencies. Ceram Int 2012, 38: 6831-6835.
[305]
Huang XL, Song Y, Wang FP. Microwave dielectric properties of BaTi4O9-BaSm2Ti4O12 composite ceramics. J Ceram Soc Japan 2013, 121: 880-883.
[306]
Yang QH, Luo T, Yu T, et al. Improvement of microwave dielectric properties of Ba2Ti9O20 ceramics using [Zn1/3Nb2/3]4+ substitution for Ti4+. J Mater Sci: Mater Electron 2020, 31: 15184-15191.
[307]
Jawahar IN, Mohanan P, Sebastian MT. A5B4O15 (A = Ba, Sr, Mg, Ca, Zn; B = Nb, Ta) microwave dielectric ceramics. Mater Lett 2003, 57: 4043-4048.
[308]
Zheng JJ, Yang YK, Wu HT, et al. Structure, infrared spectra and microwave dielectric properties of the novel Eu2TiO5 ceramics. J Am Ceram Soc 2020, 103: 4333-4341.
[309]
Niu H, Gou HY, Ewing RC, et al. First-principles investigation of structural, elastic and electronic properties of lanthanide titanate oxides Ln2TiO5. MRS Online Proc Libr 2011, 1298: 85-90.
[310]
Ohsato H. Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J Eur Ceram Soc 2001, 21: 2703-2711.
[311]
Suvorov D, Valant M, Kolar D. The role of dopants in tailoring the microwave properties of Ba6-xR8+2/3xTi18O54 R = (La-Gd) Ceramics. J Mater Sci 1997, 32: 6483-6488.
[312]
Snashall AL, Norén L, Liu Y, et al. Phase analysis and microwave dielectric properties of BaO-Nd2O3-5TiO2 composite ceramics using variable size TiO2 reagents. Ceram Int 2012, 38: S153-S157.
[313]
Yao XG, Lin HX, Zhao XY, et al. Effects of Al2O3 addition on the microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 ceramics. Ceram Int 2012, 38: 6723-6728.
[314]
Chen HT, Xiong Z, Yuan Y, et al. Dependence of microwave dielectric properties on site substitution in Ba3.75Nd9.5Ti18O54 ceramic. J Mater Sci: Mater Electron 2016, 27: 10951-10957.
[315]
Setasuwon P, Freer R, Azough F, et al. (Ba1-yPby)3·75Nd9.5Ti18O54 and (Ba1-ySry)3.75Nd9.5Ti18O54 microwave dielectric ceramics: Effect of Pb and Sr substitution on dielectric properties. Br Ceram Trans 2002, 101: 237-241.
[316]
Muhammad R, Iqbal Y, Rambo CR. Characterization of Ba4.5Re9Ti18O54 (Re = La, Nd) microwave dielectric ceramics. J Mater Sci: Mater Electron 2014, 25: 1652-1656.
[317]
Huang BY, Wang ZF, Chen T, et al. Microstructure and microwave dielectric properties of Ba4.2Nd9.2Ti18-xSnxO54 (x = 0, 0.25, 0.5, 1, 1.5, 2) ceramics. J Mater Sci: Mater Electron 2015, 26: 3375-3379.
[318]
Guo X, Tang B, Chen HT, et al. Microwave dielectric properties and microstructure of (Ba0.98Sr0.02)3.75Nd9.5Ti18-x(Zn1/3Nb2/3)xO54 ceramics. J Mater Sci: Mater Electron 2015, 26: 6182-6188.
[319]
Guo X, Tang B, Liu JQ, et al. Microwave dielectric properties and microstructure of Ba6-3xNd8+2xTi18-y(Cr1/2Nb1/2)yO54 ceramics. J Alloys Compd 2015, 646: 512-516.
[320]
An SB, Jiang J, Wang JZ, et al. Microwave dielectric property modification of Ba4Nd9.33Ti18O54 ceramics by the substitution of (Al0.5Nb0.5)4+ for Ti4+ and the addition of NdAlO3. Ceram Int 2020, 46: 3960-3967.
[321]
Xiong Z, Tang B, Fang ZX, et al. Crystal structure, Raman spectroscopy and microwave dielectric properties of Ba3.75Nd9.5Ti18-z(Al1/2Nb1/2)zO54 ceramics. J Alloys Compd 2017, 723: 580-588.
[322]
Zhou LL, Zhou HQ, Shao H, et al. Microstructure and microwave dielectric properties of Ba6-3xSm8+2xTi18O54 ceramics with various BaxSr1-xTiO3 additions. J Rare Earths 2012, 30: 142-145.
[323]
Xu Y, Fu RL, Agathopoulos S, et al. Synthesis and microwave dielectric properties of BaO-Sm2O3-5TiO2 ceramics with NdAlO3 additions. Ceram Int 2016, 42: 14573-14580.
[324]
Yao XG, Lin HX, Chen W, et al. Anti-reduction of Ti4+ in Ba4.2Sm9.2Ti18O54 ceramics by doping with MgO, Al2O3 and MnO2. Ceram Int 2012, 38: 3011-3016.
[325]
Wang G, Fu QY, Shi H, et al. Novel thermally stable, high quality factor Ba4(Pr0.4Sm0.6)28/3Ti18-yGa4y/3O54 microwave dielectric ceramics. J Am Ceram Soc 2020, 103: 2520-2527.
[326]
Wang G, Fu QY, Guo PJ, et al. A/B-site cosubstituted Ba4Pr28/3Ti18O54 microwave dielectric ceramics with temperature stable and high Q in a wide range. Ceram Int 2020, 46: 11474-11483.
[327]
Roth RS, Rawn CJ, Lindsay CG, et al. Phase equilibria and crystal chemistry of the binary and ternary barium polytitanates and crystallography of the barium zinc polytitanates. J Solid State Chem 1993, 104: 99-118.
[328]
Tang B, Yu SQ, Chen HT, et al. The influence of Cu substitution on the microwave dielectric properties of BaZn2Ti4O11 ceramics. J Alloys Compd 2013, 551: 463-467.
[329]
Yu SQ, Tang B, Zhang SR, et al. Temperature stable high-Q microwave dielectric ceramics in (1-x)BaTi4O9-xBaZn2Ti4O11 system. Mater Lett 2012, 67: 293-295.
[330]
Yu SQ, Tang B, Zhang X, et al. Improved high-Q microwave dielectric ceramics in CuO-doped BaTi4O9- BaZn2Ti4O11 system. J Am Ceram Soc 2012, 95: 1939-1943.
[331]
Yu SQ, Zhang SR, Tang B, et al. Microwave dielectric properties of BaO-2(1-x)ZnO-xNd2O3-4TiO2 (x = 0-1.0) ceramics. Ceram Int 2012, 38: 613-618.
[332]
Yang XY, Kyzzhibek T, Genevois C, et al. Ba8CoNb6-xTaxO24 eight-layer shifted hexagonal perovskite ceramics with spontaneous Ta5+ ordering and near-zero τf. Inorg Chem 2019, 58: 10974-10982.
[333]
Sanoj MA, Reshmi CP, Sreena KP, et al. Sinterability and microwave dielectric properties of nano structured 0.95MgTiO3-0.05CaTiO3 synthesised by top down and bottom up approaches. J Alloys Compd 2011, 509: 3089-3095.
[334]
Rajput SS, Keshri S. Structural, vibrational and microwave dielectric properties of (1-x)Mg0.95Co0.05TiO3-(x)Ca0.8Sr0.2TiO3 ceramic composites. J Alloys Compd 2013, 581: 223-229.
[335]
Rajput SS, Keshri S, Gupta VR. Microwave dielectric properties of (1-x)Mg0.95Zn0.05TiO3-(x)Ca0.6La0.8/3TiO3 ceramic composites. J Alloys Compd 2013, 552: 219-226.
[336]
Huang JB, Yang B, Yu CY, et al. Microwave and terahertz dielectric properties of MgTiO3-CaTiO3 ceramics. Mater Lett 2015, 138: 225-227.
[337]
Hsu CH, Chang CH. A temperature-stable and high-Q microwave dielectric ceramic of the MgTiO3-(Ca0.8Sr0.2)(Zr0.1Ti0.9)O3 system. Ceram Int 2015, 41: 6965-6969.
[338]
Li LX, Li S, Tian T, et al. Microwave dielectric properties of (1-x)MgTiO3-x(Ca0.6Na0.2Sm0.2)TiO3 ceramic system. J Mater Sci: Mater Electron 2016, 27: 1286-1292.
[339]
Chen CY, Peng ZJ, Xie LZ, et al. Microwave dielectric properties of novel (1-x)MgTiO3-xCa0.5Sr0.5TiO3 ceramics. J Mater Sci: Mater Electron 2020, 31: 13696-13703.
[340]
Hou GH, Wang ZH, Zhang F. Sintering behavior and microwave dielectric properties of (1-x)CaTiO3-xLaAlO3 ceramics. J Rare Earths 2011, 29: 160-163.
[341]
Liang F, Ni M, Lu WZ, et al. Microwave dielectric properties and crystal structures of 0.7CaTiO3- 0.3[LaxNd(1-x)]AlO3 ceramics. J Alloys Compd 2013, 568: 11-15.
[342]
Li LX, Gao ZD, Liu YR, et al. Influence of LaAlO3 additive to MgTiO3-CaTiO3 ceramics on sintering behavior and microwave dielectric properties. Mater Lett 2015, 140: 5-8.
[343]
Li LX, Li S, Lyu XS, et al. LaAlO3 doped (Mg0.95Zn0.05)TiO3-CaTiO3 ceramic system with ultra-high-Q and temperature-stable characterization. J Mater Sci: Mater Electron 2015, 26: 5871-5876.
[344]
Zhang LZ, Lin HX, Zhao XY, et al. Investigation on microwave dielectric properties and microstructures of (1-x)LaAlO3-xCa0.2Sr0.8TiO3 ceramics. J Alloys Compd 2015, 649: 254-260.
[345]
Dou ZM, Jiang J, Wang G, et al. Effect of Ga3+ substitution on the microwave dielectric properties of 0.67CaTiO3- 0.33LaAlO3 ceramics. Ceram Int 2016, 42: 6743-6748.
[346]
Weng MH, Liauh CT, Lin SM, et al. Sintering behaviors, microstructure, and microwave dielectric properties of CaTiO3-LaAlO3 ceramics using CuO/B2O3 additions. Materials 2019, 12: 4187.
[347]
Niu ST, Jiang J, Wang JZ, et al. The sintering behavior and microwave dielectric properties of 0.67CaTiO3- 0.33LaAlO3 ceramics sintered at medium temperatures with the additives of H3BO3-Li2CO3. J Mater Sci: Mater Electron 2020, 31: 14879-14885.
[348]
Wang SF, Wang YR, Hsu JC. Densification, microstructural evolution, and dielectric properties of CaTiO3-LaGaO3 microwave ceramics. J Phys Chem Solids 2011, 72: 1011-1014.
[349]]
Feteira A, Iddles D, Price T, et al. High-permittivity and low-loss microwave dielectric ceramics based on (x)RE(Zn1/2Ti1/2)O3-(1-x)CaTiO3 (RE = La and Nd). J Am Ceram Soc 2011, 94: 817-821.
[350]
Li LX, Zhang MM, Liao QW, et al. Composite dielectrics (1-y)(Mg1-xZnx)1.8Ti1.1O4-yCaTiO3 suitable for microwave applications. J Alloys Compd 2012, 531: 18-22.
[351]
Wang SF, Chen JH, Hsu YF, et al. Effects of CaTiO3 addition on the densification and microwave dielectric properties of BiSbO4 ceramics. Ceram Int 2013, 39: 2857-2861.
[352]
Chen YC, Yao SL. Influence of Ca0.8Sr0.2TiO3 on the microstructures and microwave dielectric properties of Nd(Mg0.4Zn0.1Sn0.5)O3 ceramics. J Mater Sci: Mater Electron 2012, 23: 825-831.
[353]
Yang XY, Wang XH, Yao GF, et al. Phase structures and microwave dielectric properties of xCaTiO3-(1-x)Sm0.9Nd0.1AlO3 ceramics. J Mater Sci: Mater Electron 2013, 24: 4662-4668.
[354]
Xu P, Yang J, Li JM, et al. Microstructure and microwave dielectric properties of (1-x)Ca0.6La0.267TiO3-xCa(Mg1/3Nb2/3)O3 ceramics. Ceram Int 2012, 38: 3863-3867.
[355]
Li JM, Han YX, Qiu T, et al. Effect of bond valence on microwave dielectric properties of (1-x)CaTiO3-x(Li0.5La0.5)TiO3 ceramics. Mater Res Bull 2012, 47: 2375-2379.
[356]
Wang XC, Liu YW, Wang XH, et al. High permittivity and near-zero τεdielectrics Ca0.36Sr0.64TiO3-Li0.5Nd0.5TiO3 for multilayer ceramic capacitors. Jpn J Appl Phys 2015, 54: 111501.
[357]
Ning FF, Gan L, Yuan SF, et al. Correlation between vibrational modes of A-site ions and microwave dielectric properties in (1-x)CaTiO3-x(Li0.5Sm0.5)TiO3 ceramics. J Alloys Compd 2017, 729: 742-748.
[358]
Yang XY, Wang XH, Huang M, et al. Synthesis and characterization of CaTiO3-(Sm,Nd)AlO3 microwave ceramics via sol-gel method. J Sol Gel Sci Technol 2014, 69: 61-66.
[359]
Qu JJ, Huang DL, Wei X, et al. Effect of NdAlO3 on microstructure, dielectric properties and temperature- stable mechanism of (Sr,Ca,Nd)TiO3 ceramics at microwave frequency. J Mater Sci: Mater Electron 2016, 27: 11110-11117.
[360]
Qu JJ, Liu F, Wei X, et al. Sintering behaviour and microwave dielectric properties of a new complex perovskite: (1-x)(Sr0.3Ca0.427Nd0.182)TiO3-xSmAlO3 ceramics. Bull Mater Sci 2016, 39: 1645-1649.
[361]
Zhang LM, Chang Y, Xin M, et al. Synthesis of 0.65CaTiO3-0.35SmAlO3 ceramics and effects of La2O3/SrO doping on their microwave dielectric properties. J Mater Sci: Mater Electron 2018, 29: 21205-21212.
[362]
Yang XY, Zhang CY, Wu HY, et al. Structure and microwave dielectric properties of CaSmAlO4-CaTiO3- Sm0.9Nd0.1AlO3 ceramics with medium to high permittivity. J Ceram Soc Jpn 2020, 128: 756-760.
[363]
Zhang LX, Gan L, Cheng HY, et al. Crystal structure, Raman spectra analysis and microwave dielectric properties optimization of (Ca0.22Li0.39Sm0.39)TiO3 ceramics doped with SmAlO3. J Alloys Compd 2020, 817: 152708.
[364]
Zhou SC, Luan XW, Hu S, et al. Sintering behavior, phase structure and microwave dielectric properties of CeO2 added CaTiO3-SmAlO3 ceramics prepared by reaction sintering method. Ceram Int 2021, 47: 3741-3746.
[365]
Chen YC, You HM. Tuning the microwave dielectric properties of Zn2SnO4 ceramics by adding Ca0.8Sr0.2TiO3. Ceram Int 2015, 41: 9521-9526.
[366]
Huang CL, Chien YH, Shih CF, et al. Crystal structure and dielectric properties of xCa(Mg1/3Nb2/3)O3- (1-x)(Ca0.61Nd0.26)TiO3 at the microwave frequency. Mater Res Bull 2015, 63: 1-5.
[367]
Yang XY, Wang XH, Li LT. Effect of MgO on microstructure and microwave dielectric properties of 0.84CaTiO3-0.16Sm0.9Nd0.1AlO3 ceramics. Mater Res Bull 2015, 67: 226-229.
[368]
Reda AE, Ibrahim DM, Aziz DAA. Microwave dielectric properties of (1-x)CaTiO3-x(Na0.5Nd0.5)TiO3 ceramics. J Ceram Sci Tech 2016, 7: 243-248.
[369]
Lin SH, Chen YB. Structure and characterization of B2O3 modified yNd(Mg1/2Ti1/2)O3-(1-y)Ca0.8Sr0.2TiO3 ceramics with a near-zero temperature coefficient at microwave frequency. Ceram Int 2017, 43: 2368-2371.
[370]
Yang SW, Liang BL, Liu CH, et al. Microwave sintering and microwave dielectric properties of (1-x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 ceramics. Materials 2021, 14: 438.
[371]
Meng LF, Yuan CL, Liu X, et al. Electrical microstructures of CaTiO3-Bi0.5Na0.5TiO3 microwave ceramics with high permittivity (εrmax ∼487). J Alloys Compd 2019, 803: 850-859.
[372]
Zhou XJ, Zhou HF, Luan XW, et al. Structure and dielectric properties of novel series of 3CaO-RE2O3- 2WO3 (RE = La, Nd and Sm) microwave ceramics and the adjustment of τf value. J Mater Sci: Mater Electron 2020, 31: 14953-14960.
[373]
Zhang XH, Chang N, Zhang J, et al. Low-loss (1-x)Ba0.6Sr0.4La4Ti4O15-xCaTiO3 microwave dielectric ceramics with medium permittivity. J Alloys Compd 2020, 819: 153011.
[374]
Zhou XJ, Wang KG, Hu S, et al. Preparation, structure and microwave dielectric properties of novel La2MgGeO6 ceramics with hexagonal structure and adjustment of its τf value. Ceram Int 2021, 47: 7783-7789.
[375]
Hsu CH, Chang CH. Microwave dielectric properties of (Ca0.8Sr0.2)(SnxTi1-x)O3 ceramics. Mater Sci Eng: B 2013, 178: 354-357.
[376]
Ravi GA, Azough F, Freer R. Structure and microwave dielectric properties of Ca0.7Ti0.7La0.3(Al0.3-xGax)O3 ceramics. Adv Appl Ceram 2012, 111: 398-403.
[377]
Lowndes R, Azough F, Cernik R, et al. Structures and microwave dielectric properties of Ca(1-x)Nd2x/3TiO3 ceramics. J Eur Ceram Soc 2012, 32: 3791-3799.
[378]
Li JM, Qiu T. Microwave sintering of Ca0.6La0.2667TiO3 microwave dielectric ceramics. Int J Miner Metall Mater 2012, 19: 245-251.
[379]
Iqbal Y, Muhammad R. Phase, microstructure and microwave dielectric properties of Nb and Ga doped Ca0.6La0.267TiO3 ceramics. J Mater Sci: Mater Electron 2015, 26: 10119-10122.
[380]
Zhou CR, Chen GH, Cen ZY, et al. Structure and microwave dielectric characteristics of lithium-excess Ca0.6Nd0.8/3TiO3/(Li0.5Nd0.5)TiO3 ceramics. Mater Res Bull 2013, 48: 4924-4929.
[381]
Hsu CH, Tsai PS, Tseng CF, et al. Microwave dielectric properties of Ca0.4-xMgxSm0.4TiO3 ceramics. J Alloys Compd 2014, 582: 355-359.
[382]
Muhammad R, Iqbal Y. Microwave dielectric properties of CaTi1-x(Nb0.5Ga0.5)xO3 ceramics. Mater Lett 2015, 153: 121-123.
[383]
Xu Y, Fu RL, Agathopoulos S, et al. Sintering behavior, microstructure, and microwave dielectric properties of Ca0.66Ti0.66Sm0.34Al0.34O3 ceramics. Ceram Int 2016, 42: 19036-19041.
[384]
Xu Y, Fu RL, Zhao P, et al. Sintering behavior, microwave dielectric properties of Ca0.66Ti0.66Nd0.34Al0.34O3 ceramics revealed by microstructure and Raman scattering. J Alloys Compd 2019, 785: 335-342.
[385]
Chen GH, Chen JS, Kang XL, et al. Structural and microwave dielectric properties of new CaTi1-x(Al0.5Nb0.5)xO3 thermally stable ceramics. J Alloys Compd 2016, 675: 301-305.
[386]
Hameed I, Liu XQ, Li L, et al. Structure evolution and improved microwave dielectric characteristics in CaTi1-x(Al0.5Nb0.5)xO3 ceramics. J Alloys Compd 2020, 845: 155435.
[387]
Yan YX, Li ZM, Zhang ML, et al. Preparation and microwave dielectric properties of Ca0.6La0.8/3(SnxTi1-x)O3 ceramics. Ceram Int 2017, 43: 8534-8537.
[388]
Wang XH, Mu ML, Jiang H, et al. Investigation on structure and microwave dielectric properties of novel high dielectric constant Ca1-3x/2CexTiO3 ceramics sintered in nitrogen atmosphere. J Mater Sci: Mater Electron 2019, 30: 1591-1599.
[389]
Liu S, Tang B, Zhou MK, et al. Microwave dielectric characteristics of high permittivity Ca0.35Li0.25Nd0.35Ti1-x(Zn1/3Ta2/3)xO3 ceramics (x = 0.00-0.12). Ceram Int 2019, 45: 8600-8606.
[390]
Xiong Z, Tang B, Luo FC, et al. Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. J Alloys Compd 2020, 835: 155249.
[391]
Shi L, Peng R, Zhang HW, et al. Effects of Magnesium- tungsten co-substitution on crystal structure and microwave dielectric properties of CaTi1-x(Mg1/2W1/2)xO3 ceramics. Ceram Int 2021, 47: 3354-3360.
[392]
Zaman A, Uddin S, Mehboob N, et al. Structural investigation and improvement of microwave dielectric properties in Ca(HfxTi1-x)O3 ceramics. Phys Scr 2020, 96: 025701.
[393]
Hu P, Jiao H, Wang CH, et al. Influence of thermal treatments on the low frequency conductivity and microwave dielectric loss of CaTiO3 ceramics. Mater Sci Eng: B 2011, 176: 401-405.
[394]
Hsu CH, Chang CH. Microwave dielectric properties of new (Ca0.8Sr0.2)SnO3 ceramics. Ceram Int 2012, 38: 4411-4413.
[395]
Chen YC, Chen KC, Wu CY. Microwave dielectric properties of (1-y)Nd1-2x/3Bax(Mg0.5Sn0.5)O3-yCa0.8Sr0.2TiO3 ceramic. J Mater Sci: Mater Electron 2013, 24: 819-826.
[396]
Shi F, Fu GG, Xiao EC, et al. Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic. J Mater Sci: Mater Electron 2020, 31: 18070-18076.
[397]
Tian CL, Yue ZX, Zhou YY. Microwave dielectric properties of Ba[Ti0.4Ga0.3Nb0.3(1-x)Sb0.3x]O3 perovskite ceramics. Mater Res Bull 2013, 48: 455-460.
[398]
Liu F, Yuan CL, Liu XY, et al. Effects of structural characteristics on microwave dielectric properties of (Sr0.2Ca0.488Nd0.208)Ti1-xGa4x/3O3 ceramics. Mater Res Bull 2015, 70: 678-683.
[399]
Parida S, Rout SK, Subramanian V, et al. Structural, microwave dielectric properties and dielectric resonator antenna studies of Sr(ZrxTi1-x)O3 ceramics. J Alloys Compd 2012, 528: 126-134.
[400]
Wang JY, Zhou H, Liu JT, et al. Microstructure and dielectric tunable properties of SrO(Sr1-xBaxTiO3)n microwave ceramics. Ceram Int 2012, 38: 3503-3507.
[401]
Zhang MW, Zhai JW, Shen B, et al. Microwave dielectric properties of low loss and highly tunable Ba0.5Sr0.5Ti1-3y/2WyO3 ceramics. J Mater Res 2012, 27: 910-914.
[402]
Zhang JJ, Zhai JW, Wang JY. Structural and dielectric tunable properties of Ba0.4Sr0.6Ti1-ySiyO3 microwave ceramics. Sci China Technol Sci 2012, 55: 610-615.
[403]
Tang LJ, Zhai JW, Shen B, et al. Property optimization of Ba0.4Sr0.6TiO3-BaMoO4 composite ceramics for tunable microwave applications. Ceram Int 2012, 38: 4967-4971.
[404]
Tang LJ, Zhai JW, Zhang HJ, et al. Microwave dielectric properties of tunable Ba0.5Sr0.5TiO3 and scheelite AMoO4 (A = Ba, Sr) composite ceramics. J Alloys Compd 2013, 551: 556-561.
[405]
Tang LJ, Wang JW, Zhai JW, et al. Dielectric tunable properties of Ba0.5Sr0.5TiO3-MgMoO4 composite ceramics for microwave applications. J Mater Sci: Mater Electron 2013, 24: 2576-2580.
[406]
Jiang HT, Zhai JW, Zhang MW, et al. Enhanced microwave dielectric properties of Ba0.40Sr0.60TiO3- Zr0.80Sn0.20TiO4 composite ceramics. J Mater Sci 2012, 47: 2617-2623.
[407]
Zhang QW, Zhai JW, Ben QQ, et al. Enhanced microwave dielectric properties of Ba0.4Sr0.6TiO3 ceramics doping by metal Fe powders. J Appl Phys 2012, 112: 104104.
[408]
He YY, Zhao JY, Xu YB, et al. Microstructures and dielectric tunable properties of Ba0.5Sr0.5TiO3-MgO- Mg2TiO4 composite ceramics. J Mater Sci: Mater Electron 2013, 24: 2372-2378.
[409]
He YY, Zhao JY, Xu YB, et al. Anomalous correlation between dielectric constant and tunability in (Ba,Sr)TiO3-MgO-Mg2SiO4 composite ceramics. J Am Ceram Soc 2013, 96: 1203-1208.
[410]
Liu D, Pu YP, Shi X. Effects of Bi2O3 and Cr2Ti3O9 co-doping on dielectric properties in BaTiO3-based ceramics. Vacuum 2012, 86: 1568-1571.
[411]
Hu GX, Gao F, Liu LL, et al. Microstructure and dielectric properties of highly tunable Ba0.6Sr0.4TiO3/MgO/Al2O3/ ZnO composite. J Alloys Compd 2012, 518: 44-50.
[412]
Jiang K, Zhang JZ, Yu WL, et al. Manganese doping effects on interband electronic transitions, lattice vibrations, and dielectric functions of perovskite-type Ba0.4Sr0.6TiO3 ferroelectric ceramics. Appl Phys A 2012, 106: 877-884.
[413]
Tseng CF, Lu SC. Microwave dielectric properties of (Ba0.1Mg0.9)(A0.05Ti0.95)O3 (A = Zr, Sn) ceramics. Ferroelectrics 2013, 451: 76-83.
[414]
Liu F, Liu XY, Yuan CL, et al. Microstructures and microwave dielectric properties of (1-x)(Sr0.4Na0.3La0.3)TiO3-xLnAlO3 (Ln = Sm, Nd) ceramic systems. J Eur Ceram Soc 2015, 35: 2091-2098.
[415]
Xie WT, Jiang QX, Cao QL, et al. Effect of ZnO/WO3 additives on sintering behavior and microwave dielectric properties of (Sr,Ca)TiO3-(Sm,Nd)AlO3 ceramics. J Mater Sci: Mater Electron 2018, 29: 9745-9750.
[416]
Singh J, Bahel S. Structural and dielectric properties of (BaxMg1-x)(Ti0.95Sn0.05)O3 (x = 0.025, 0.05, 0.075 and 0.1) solid solutions. J Mater Sci: Mater Electron 2019, 30: 6500-6506.
[417]
Ma PP, Liu XQ, Zhang FQ, et al. Sr(Ga0.5Nb0.5)1-xTixO3 low-loss microwave dielectric ceramics with medium dielectric constant. J Am Ceram Soc 2015, 98: 2534-2540.
[418]
Qu JJ, Liu F, Yuan CL, et al. Microwave dielectric properties of 0.2SrTiO3-0.8Ca0.61Nd0.26Ti1-xAl4x/3O3 ceramics. Mater Sci Eng: B 2015, 191: 15-20.
[419]
Singh J, Bahel S. Synthesis and characterization of temperature stable low-loss (1-x)Mg(Ti0.95Sn0.05)O3- (x)BaTiO3 (0 ≤ x ≤ 0.1) ceramics for microwave applications. J Mater Sci 2021, 56: 10947-10964.
[420]
Ullah B, Lei W, Cao QS, et al. Structure and microwave dielectric behavior of A-site-doped Sr(1-1.5x)CexTiO3 ceramics system. J Am Ceram Soc 2016, 99: 3286-3292.
[421]
Tian CL, Yue ZX, Meng SQ, et al. Structures and microwave dielectric properties of Ba[Ti1-x(Co0.5W0.5)x]O3 (x = 0.40-0.90) perovskite ceramics. J Am Ceram Soc 2012, 95: 1645-1650.
[422]
Tian CL, Yue ZX, Zhou YY, et al. Crystal structures and microwave dielectric properties of Zn, W co-substituted BaTiO3 perovskite ceramics. J Solid State Chem 2013, 197: 242-247.
[423]
Lin YJ, Wang SF, Chen SH, et al. Microwave dielectric properties of (Ba1-xSrx)(Mg0.5W0.5)O3 ceramics. Ceram Int 2015, 41: 8931-8935.
[424]
Chen YC, Syu RY. Dielectric properties of Ba2Mg0.95Zn0.05WO6 ceramics at microwave frequency. J Mater Sci: Mater Electron 2016, 27: 6979-6984.
[425]
Bian JJ, Wu JY. Structure and microwave dielectric properties of B-site deficient double perovskite-Ba[(Mg(1-x)/2Yx/3□x/6)W1/2]O3. Ceram Int 2016, 42: 3290-3295.
[426]
Ullah B, Lei W, Wang XW, et al. Structure instability and high microwave dielectric permittivity of nonstoichiometric (Sr0.4Ce0.4)1-xNdxTi0.8Mg0.2O3 system for wireless communication. J Materiomics 2021, 7: 25-33.
[427]
Hu X, Huang XJ, Chen YH, et al. Phase evolution and microwave dielectric properties of SrTiO3 added ZnAl2O4-Zn2SiO4-SiO2 ceramics. Ceram Int 2020, 46: 7050-7054.
[428]
Liu F, Qu JJ, Yan HG, et al. Study on phase structures and compositions, microstructures, and dielectric characteristics of (1-x)NdGaO3-xBi0.5Na0.5TiO3 microwave ceramic systems. Ceram Int 2020, 46: 16185-16195.
[429]
Jin X, Guo QH, Bian JJ. Structure and dielectric properties of A-site-deficient perovskite Nd1-x/3MxNbO3 (M = Li, Ag; 0 ≤ x ≤ 0.20) ceramics. J Mater Sci 2012, 47: 6015-6024.
[430]
Xiao M, Zhang QQ, Jia CR. The microstructure and properties of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramic system. J Wuhan Univ Technol Mater Sci Ed 2012, 27: 735-739.
[431]
Peng Y, Li LX, Cao LF, et al. Correlation between crystal structure and properties of ultra-high dielectric constant ceramics xSrCO3-Bi2O3-Ag(Nb,Ta)O3. J Electroceramics 2012, 28: 209-213.
[432]
Saleem M, Iqbal Y, Qin S, et al. Phase, microstructure and microwave dielectric properties of A-site deficient (La,Nd)2/3TiO3 perovskite ceramics. Mater Sci Pol 2015, 33: 126-130.
[433]
Zhang MM, Li LX, Xia WS, et al. Structure and properties analysis for MgTiO3 and (Mg0.97M0.03)TiO3 (M = Ni, Zn, Co and Mn) microwave dielectric materials. J Alloys Compd 2012, 537: 76-79.
[434]
Gogoi P, Sharma P, Pamu D. Microwave and broadband dielectric properties of Ni substituted MgTiO3 ceramics. J Mater Sci: Mater Electron 2016, 27: 9052-9060.
[435]
Gogoi P, Singh LR, Pamu D. Characterization of Zn doped MgTiO3 ceramics: An approach for RF capacitor applications. J Mater Sci: Mater Electron 2017, 28: 11712-11721.
[436]
Lin SH, Chen YB. Low dielectric loss characteristics of [(Mg1-xZnx)0.95Co0.05]1.02TiO3.02 ceramics at microwave frequencies. J Mater Sci: Mater Electron 2017, 28: 4154-4160.
[437]
Li LX, Ding X, Liao QW. Structure and properties analysis for low-loss (Mg1-xCox)TiO3 microwave dielectric materials prepared by reaction-sintering method. Ceram Int 2012, 38: 1937-1941.
[438]
Gangwar RK, Singh SP, Choudhary M, et al. Microwave dielectric properties of (Zn1-xMgx)TiO3 (ZMT) ceramics for dielectric resonator antenna application. J Alloys Compd 2011, 509: 10195-10202.
[439]
Yu HT, Xue XM, Xu GL. Correlation between Sn substitution for Ti and microwave dielectric properties of magnesium titanate ceramics. Int J Appl Ceram Technol 2013, 10: E186-E191.
[440]
Santhosh Kumar T, Gogoi P, Perumal A, et al. Effect of cobalt doping on the structural, microstructure and microwave dielectric properties of MgTiO3 ceramics prepared by semi alkoxide precursor method. J Am Ceram Soc 2014, 97: 1054-1059.
[441]
Gong ZJ, Wang ZF, Wang LX, et al. Microwave dielectric properties of high-Q Mg(SnxTi1-x)O3 ceramics. Electron Mater Lett 2013, 9: 331-335.
[442]
Jia XB, Xu Y, Zhao P, et al. Structural dependence of microwave dielectric properties in ilmenite-type Mg(Ti1-xNb)O3 solid solutions by Rietveld refinement and Raman spectra. Ceram Int 2021, 47: 4820-4830.
[443]
Wu HT, Jiang YS, Cui YJ, et al. Improvements in the sintering behavior and microwave dielectric properties of geikielite-type MgTiO3 ceramics. J Electron Mater 2013, 42: 445-451.
[444]
Wang HP, Yang QH, Li DH, et al. Sintering behavior and microwave dielectric properties of MgTiO3 ceramics doped with B2O3 by sol-gel method. J Mater Sci Technol 2012, 28: 751-755.
[445]
Tseng CF, Lu SC. Influence of SrTiO3 modification on dielectric properties of Mg(Zr0.05Ti0.95)O3 ceramics at microwave frequency. Mater Sci Eng: B 2013, 178: 358-362.
[446]
Yu HT, Cheng JL, Zhang WB, et al. Microwave dielectric properties of Mg(Zr0.05Ti0.95)O3-SrTiO3 ceramics. J Mater Sci: Mater Electron 2012, 23: 572-575.
[447]
Xue XM, Yu HT, Xu GL. Phase composition and microwave dielectric properties of Mg-excess MgTiO3 ceramics. J Mater Sci: Mater Electron 2013, 24: 1287-1291.
[448]
Huang CL, Huang SH. Low-loss microwave dielectric ceramics in the (Co1-xZnx)TiO3 (x = 0-0.1) system. J Alloys Compd 2012, 515: 8-11.
[449]
Liou YC, Yang SL, Chu SY. Effects of MgO and Mg(OH)2 on phase formation and properties of strontium-doped MgTiO3 microwave dielectric ceramics. J Alloys Compd 2013, 576: 161-169.
[450]
Li H, Tang B, Li YX, et al. Effects of Mg2.05SiO4.05 addition on phase structure and microwave properties of MgTiO3-CaTiO3 ceramic system. Mater Lett 2015, 145: 30-33.
[451]
Tang B, Li YX, Li H, et al. Structure and microwave dielectric properties of (Zn0.3Co0.7)Ti1-xSnxO3 ceramics. J Mater Sci: Mater Electron 2015, 26: 2795-2799.
[452]
Huang XP, Liu F, Yuan CL, et al. Microstructures and microwave dielectric properties of Mgn+1TinO3n+1 ceramics with ultralow dielectric loss. Mater Lett 2016, 185: 432-435.
[453]
Chen CY, Peng ZJ, Xie LZ, et al. Effects of adding B2O3 on microwave dielectric properties of 0.9625MgTiO3- 0.0375(Ca0.5Sr0.5)TiO3 composite ceramics. Int J Appl Ceram Technol 2020, 17: 2545-2552.
[454]
Yu T, Luo T, Yang QH, et al. Ultra-high quality factor of Mg6Ti5O16-based microwave dielectric ceramics with temperature stability. J Mater Sci: Mater Electron 2021, 32: 2547-2556.
[455]
Chen KC, Chen YC, Chen MD. Microwave dielectric properties of Mg1/3Nb2/3SnO4 ceramics. Ferroelectr Lett Sect 2012, 39: 1-7.
[456]
Bhuyan RK, Kumar TS, Pamu D, et al. Structural and microwave dielectric properties of Mg2TiO4 ceramics synthesized by mechanical method. Int J Appl Ceram Technol 2013, 10: E18-E24.
[457]
Bhuyan RK, Kumar TS, Goswami D, et al. Liquid phase effect of La2O3 and V2O5 on microwave dielectric properties of Mg2TiO4 ceramics. J Electroceramics 2013, 31: 48-54.
[458]
Bhuyan RK, Kumar TS, Goswami D, et al. Enhanced densification and microwave dielectric properties of Mg2TiO4 ceramics added with CeO2 nanoparticles. Mater Sci Eng: B 2013, 178: 471-476.
[459]
Huang CL, Tseng YW, Chen JY, et al. Dielectric properties of high-Q (Mg1-xZnx)1.8Ti1.1O4 ceramics at microwave frequency. J Eur Ceram Soc 2012, 32: 2365-2371.
[460]
Chen YB. Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+. J Alloys Compd 2012, 513: 481-486.
[461]
Cheng L, Liu P, Qu SX, et al. Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. J Alloys Compd 2015, 623: 238-242.
[462]
Lyu XS, Li LX, Sun H, et al. A novel low-loss spinel microwave dielectric ceramic CoZnTiO4. J Mater Sci: Mater Electron 2015, 26: 8663-8666.
[463]
Li H, Tang B, Li YX, et al. Relationships between Sn substitution for Ti and microwave dielectric properties of Mg2(Ti1-xSnx)O4 ceramics system. J Mater Sci: Mater Electron 2015, 26: 571-577.
[464]
Chen YC, Syu RY. Enhancement quality factor of ZnNiTiO4 microwave ceramics by substituting Ti4+ with Sn4+. J Mater Sci: Mater Electron 2017, 28: 673-678.
[465]
Chen YC, Syu RY. Elucidating the microstructures and microwave dielectric properties of ZnNiTiO4 ceramics. J Mater Sci: Mater Electron 2016, 27: 8356-8362.
[466]
Li H, Xiang R, Chen XQ, et al. Intrinsic dielectric behavior of Mg2TiO4 spinel ceramic. Ceram Int 2020, 46: 4235-4239.
[467]
Xiang R, Li H, Zhang PC, et al. Crystal structure and microwave dielectric properties of Mg2Ti1-xGa4/3xO4 (0.05 ≤ x ≤ 0.13) ceramics. Ceram Int 2021, 47: 8447-8452.
[468]
Fang ZX, Tang B, Li YX, et al. Microstructures and microwave dielectric properties of Na0.5Nd0.2Sm0.3Ti1-xSnxO3 ceramics (x = 0.00 to 0.50). J Electron Mater 2015, 44: 4236-4242.
[469]
Zhou L, Tang B, Zhang SR. Influence of Sn-substitution on microstructure and microwave dielectric properties of Na1/2Nd1/2TiO3 ceramics. J Mater Sci: Mater Electron 2015, 26: 424-428.
[470]
Fang ZX, Tang B, Si F, et al. Effects of Zr-substitution on microwave dielectric properties of Na0.5Nd0.2Sm0.3Ti1-xZrxO3 ceramics (x = 0.00-0.30). J Electron Mater 2016, 45: 5198-5205.
[471]
Fang ZX, Tang B, Zhang SR. Microwave dielectric properties of Na1/2Sm1/2Ti1-x(Cr1/2Nb1/2)xO3Ceramics (x = 0-0.025). IOP Conf Ser: Mater Sci Eng 2017, 170: 012029.
[472]
Gan L, An SB, Yuan SF, et al. Sintering characteristics and microwave dielectric properties of (1-x)Li0.5Sm0.5TiO3-xNa0.5Sm0.5TiO3 (x = 0.35 to 0.45) ceramics. J Electron Mater 2019, 48: 3624-3630.
[473]
Zhou YY, Tian CL, Meng SQ, et al. Structural transitions and microwave dielectric properties of Ba2-2xSr2xSmSbO6 double perovskites. J Am Ceram Soc 2012, 95: 1665-1670.
[474]
Wu JY, Bian JJ. Structure stability and microwave dielectric properties of double perovskite ceramics-Ba2Mg1-xCaxWO6 (0.0≤ x ≤ 0.15). Ceram Int 2012, 38: 3217-3225.
[475]
Chen YC, Wang YN, Syu RY. Effect of sintering temperature on microstructures and microwave dielectric properties of Ba2MgWO6 ceramics. J Mater Sci: Mater Electron 2016, 27: 4259-4264.
[476]
Diao CL, Wang CH, Luo NN, et al. First-principle calculation and assignment for vibrational spectra of Ba(Mg1/2W1/2)O3 microwave dielectric ceramic. J Am Ceram Soc 2013, 96: 2898-2905.
[477]
Li L, Zhang W, Chen XM, et al. Dielectric properties of CaCu3Ti4O12, Ba(Fe1/2Nb1/2)O3, and Sr(Fe1/2Nb1/2)O3 giant permittivity ceramics at microwave frequencies. J Appl Phys 2012, 111: 064108.
[478]
Tay KW, Fu YP, Huang JF, et al. Effect of Bi2O3 and B2O3 additives on the sintering temperature, microstructure, and microwave dielectric properties for Sm(Mg0.5Ti0.5)O3 ceramics. Ceram Int 2011, 37: 1025-1031.
[479]
Chen YB. New dielectric material system of Nd(Mg1/2Ti1/2)O3-SrTiO3 in the microwave frequency range. J Alloys Compd 2011, 509: 2285-2288.
[480]
Chen YC. Improving microwave dielectric properties of La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics with CuO additive. Curr Appl Phys 2012, 12: 483-488.
[481]
Hsu CH, Chang CH. Microwave dielectric properties of Nd(Zn1/2Ti1/2)O3 ceramics with V2O5 additives. J Mater Eng Perform 2013, 22: 312-315.
[482]
Chen YY, Chen YC, Liu HX, et al. Effect of Sm substitution on microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics. J Mater Sci: Mater Electron 2013, 24: 4600-4606.
[483]
Chen YC, Yao SL, Wu CY. Microwave dielectric properties and microstructures of Nd(Mg0.5-xCoxSn0.5)O3 ceramics. J Mater Sci: Mater Electron 2012, 23: 1320-1326.
[484]
Wang YN. Enhancing the microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics by substituting Nd3+ with Ca2+. J Mater Sci: Mater Electron 2013, 24: 4510-4515.
[485]
Chen YC, Wu CY. Effect of Sr substitution on microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics. Ceram Int 2013, 39: 1877-1883.
[486]
Chen YC, Weng MZ, Chen YY. Influence of Ba2+ substitution on the microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics. J Mater Sci: Mater Electron 2013, 24: 2970-2975.
[487]
Chen YC, Chen YY, Yao SL. Improved microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics with Ni2+ substituting. J Mater Sci: Mater Electron 2013, 24: 1150-1157.
[488]
Chen YC, Chang KC, Yao SL. Improved microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics by substituting Mg2+ with Zn2+. Ceram Int 2012, 38: 5377-5383.
[489]
Chen YC, Tsai RJ, Wu CY. Microwave dielectric properties and microstructures of Nd(Mg0.5Sn0.5-xTix)O3 ceramics. Ceram Int 2012, 38: 2927-2934.
[490]
Chen YC, Chang KC, Tsai DY. A hybrid dielectric resonator antenna based upon novel complex perovskite microwave ceramic. Ceram Int 2013, 39: 8043-8048.
[491]
Li JM, Qiu T. Microwave dielectric properties of Nd[(Zn1-xCox)0.5Ti0.5]O3 (0.025 ≤ x ≤ 0.1) ceramics. Ceram Int 2012, 38: 2597-2600.
[492]
Li JM, Fan CG, Cheng ZX, et al. Influence of Zn nonstoichiometry on the phase structure, microstructure and microwave dielectric properties of Nd(Zn0.5Ti0.5)O3 ceramics. J Alloys Compd 2019, 793: 385-392.
[493]
Cao ZK, Xiao EC, Li XH, et al. Lattice vibrational characteristics, crystal structures and dielectric properties of non-stoichiometric Nd(1+x)(Mg1/2Sn1/2)O3 ceramics. J Materiomics 2020, 6: 476-484.
[494]
Shi F, Xiao EC, Chen GH, et al. Lattice vibrational characteristics and structures-properties relationships of non-stoichiometric Nd[Mg0.5Sn0.5(1+x)]O3 ceramics. Appl Phys A 2020, 126: 1-14.
[495]
Chen YC, Wang YN, Lee WC. Microstructures and microwave dielectric properties of La1-xBx(Mg0.5Sn0.5)O3 ceramics. Curr Appl Phys 2012, 12: 726-731.
[496]
Chen YC. Improved microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramics with Yb3+ doping. Int J Appl Ceram Technol 2012, 9: 606-614.
[497]
Wang YN, Chen MD. Improved microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramic with Ba2+ substitution. J Mater Sci: Mater Electron 2013, 24: 3730-3735.
[498]
Remya GR, Dhwajam DB, Thomas JK, et al. Dielectric and optical properties of ZnO and Eu2O3 doped Pr0.22Y0.78TiTaO6 ceramic. J Mater Sci: Mater Electron 2012, 23: 370-375.
[499]
Chen YY, Chen YC, Chen MD. Tuning the microwave dielectric properties of La(Mg0.4Sr0.1Sn0.5)O3 by introducing Ca0.8Sr0.2TiO3. J Mater Sci: Mater Electron 2013, 24: 3126-3131.
[500]
Tseng CF, Huang CC. Microwave dielectric properties of (1-x)Nd(Co1/2Ti1/2)O3-x(Ca0.8Sr0.2)TiO3 composite ceramics. J Mater Sci 2012, 47: 3982-3988.
[501]
Wang YN, Chen MD. Improved microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramic with Sr2+ Substitution. Ferroelectr Lett Sect 2013, 40: 121-129.
[502]
Li JM, Qiu T. Microwave dielectric properties of (1-x)Ca0.6La0.267TiO3-xCa(Sm0.5Nb0.5)O3 ceramics. Ceram Int 2012, 38: 4331-4335.
[503]
Fan J, Zhao Q, Du K, et al. Lattice structure and microwave dielectric properties of La[Al1-x(Mg0.5Ti0.5)x]O3 (x = 0-0.2)-based ceramics. J Am Ceram Soc 2020, 103: 3231-3237.
[504]
Yang HC, Zhang SR, Yang HY, et al. Vibrational spectroscopic and crystal chemical analyses of double perovskite Y2MgTiO6 microwave dielectric ceramics. J Am Ceram Soc 2020, 103: 1121-1130.
[505]
Chen CT, Huang CY, Lin YM, et al. Structure and microwave dielectric property relations in Barium cobalt magnesium niobate ceramics. Jpn J Appl Phys 2011, 50: 091503.
[506]
Wang SF, Wang YR, Liu CY, et al. Microwave dielectric properties of multi-ions Ba(Zn,Ta)O3-based perovskite ceramics. Ceram Int 2012, 38: 1127-1132.
[507]
Ning PF, Li LX, Zhang P, et al. Raman scattering, electronic structure and microwave dielectric properties of Ba([Mg1-xZnx]1/3Ta2/3)O3 ceramics. Ceram Int 2012, 38: 1391-1398.
[508]
Chen CT, Huang CY, Lin HJ, et al. Effect of small amount of cobalt substitution on structure and microwave dielectric properties of Barium magnesium niobate ceramics. J Eur Ceram Soc 2012, 32: 2373-2380.
[509]
Sun TL, Li L, Mao MM, et al. Effects of postdensification annealing on microwave dielectric properties of Ba([Mg1-xCox]1/3Nb2/3)O3 ceramics. Int J Appl Ceram Technol 2013, 10: E210-E218.
[510]
Ma PP, Yi L, Liu XQ, et al. Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6-x/2Zn0.4-x/2Mgx)1/3Nb2/3)O3 ceramics. J Am Ceram Soc 2013, 96: 3417-3424.
[511]
Ma PP, Yi L, Liu XQ, et al. Effects of Mg substitution on order/disorder transition, microstructure, and microwave dielectric characteristics of Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics. J Am Ceram Soc 2013, 96: 1795-1800.
[512]
Diao CL, Shi F. Effect of sintering temperature on dielectric properties, vibrational modes and crystal structures of Ba[(Ni0.7Zn0.3)1/3Nb2/3]O3 ceramics. J Mater Sci 2012, 47: 5438-5445.
[513]
Wang J, Lu WZ, Lei W. Effects of Ba deficiency on ion ordering, grain growth, and microwave dielectric properties of Ba1-xZn1/3Nb2/3O3 ceramics. Jpn J Appl Phys 2012, 51: 041501.
[514]
Diao CL, Shi F. Correlation among dielectric properties, vibrational modes, and crystal structures in Ba[SnxZn(1-x)/3Nb2(1-x)/3]O3 solid solutions. J Phys Chem C 2012, 116: 6852-6858.
[515]
Shi F, Diao CL. Evaluation of dielectric properties, vibration modes, and crystal structures in Ba[Zn1-x/3Nix/3Nb2/3]O3 ceramics. Metall Mater Trans A 2013, 44: 381-387.
[516]
Fu MS, Ni L, Chen XM. Abnormal variation of microwave dielectric properties in A/B site co-substituted (Ca1-0.3xLa0.2x)[(Mg1/3Ta2/3)1-xTix]O3 complex perovskite ceramics. J Eur Ceram Soc 2013, 33: 813-823.
[517]
Sun TL, Mao MM, Chen XM. Structure and microwave dielectric properties of Ba[(Mg1-xNix)1/3Nb2/3]O3 ceramics. Mater Res Bull 2015, 72: 291-298.
[518]
Sindam B, James Raju KC. Influence of sintering temperature on microwave dielectric properties, structure and lattice modes of Ba(Zn1/3Ta2/3)O3 resonators. J Mater Sci: Mater Electron 2015, 26: 3997-4004.
[519]
Sun TL, Zhao YF, Chen XM. Improvement of microwave dielectric properties for Ba(Ni1/3Nb2/3)O3 ceramics by Zr-substitution. Ceram Int 2015, 41: 5872-5880.
[520]
Sun TL, Chen XM. Tailoring the order-disorder transition and microwave dielectric properties of Ba[(Ni0.6Zn0.4)1/3Nb2/3]O3 ceramics by Mg-substitution. Mater Chem Phys 2015, 165: 142-149.
[521]
Wang ZF, Huang BY, Wang LX, et al. Low loss (Ba1-xSrx)(Co1/3Nb2/3)O3 solid solution: Phase evolution, microstructure and microwave dielectric properties. J Mater Sci: Mater Electron 2015, 26: 4273-4279.
[522]
Zhou XH, Zhang YQ, Yang XS, et al. Effects of Y2O3 substitution on microwave dielectric properties of Ba(Co0.6Zn0.38)1/3Nb2/3O3 ceramics. J Mater Sci: Mater Electron 2015, 26: 7683-7689.
[523]
Zhang YQ, Zhou XH, Yang XS, et al. Effects of Y2O3/CeO2 co-doping on microwave dielectric properties of Ba(Co0.6Zn38)1/3Nb2/3O3 ceramics. J Alloys Compd 2016, 679: 247-253.
[524]
Rodrigues JEFS, Castro PJ, Pizani PS, et al. Structural ordering and dielectric properties of Ba3CaNb2O9-based microwave ceramics. Ceram Int 2016, 42: 18087-18093.
[525]
Ni LZ, Li LX, Du MK. Ultra-high-Q and wide temperature stable Ba(Mg1/3Tax)O3 microwave dielectric ceramic for 5G-oriented dielectric duplexer adhibition. J Alloys Compd 2020, 844: 156106.
[526]
Jinga SI, Stoleriu S, Busuioc C. Microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics doped with Nb2O5, MnO2 or V2O3. Mater Res Bull 2012, 47: 3713-3718.
[527]
Wang ZF, Huang BY, Wang LX, et al. Sintering characteristics and microwave dielectric properties of Ba(Co1/3Nb2/3)O3-MnO2 ceramics. J Mater Sci: Mater Electron 2015, 26: 1107-1112.
[528]
Tang B, Fang ZX, Li YX, et al. Microwave dielectric properties of Ba(Co0.56Y0.04Zn0.35)1/3Nb2/3+xO3 (x = -0.004 ~ 0.008) ceramics. J Mater Sci: Mater Electron 2015, 26: 6585-6591.
[529]
Sindam B, James Raju KC. Microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 for application in high power waveguide window. Eur Phys J B 2016, 89: 92.
[530]
Peng S, Xu JM, Li H. Microstructure and microwave dielectric properties of Ba([Mg1-xZnx]1/3Ta2/3)O3 solid solution ceramics. J Mater Sci: Mater Electron 2020, 31: 20423-20430.
[531]
Peng S, Wu MQ, Xu JM, et al. Effect of La2O3 addition on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. J Mater Sci: Mater Electron 2017, 28: 3349-3355.
[532]
Peng S, Xu JM, Li F. Influence of Ca2+ substitution for Ba2+ on the crystal structure and microwave dielectric properties of Ba1-xCax(Mg1/3Ta2/3)O3 ceramics. J Mater Sci: Mater Electron 2020, 31: 15822-15828.
[533]
Peng S, Wu MQ, Xu JM, et al. Microwave dielectric properties of Ba[Mg1-x/3SnxTa2(1-x)/3]O3 (x = 0-0.25) ceramics. J Mater Sci: Mater Electron 2017, 28: 174-179.
[534]
Ni LZ, Li LX, Du MK, et al. Wide temperature stable Ba(MgxTa2/3)O3 microwave dielectric ceramics with ultra-high-Q applied for 5G dielectric filter. Ceram Int 2021, 47: 1034-1039.
[535]
Guevarra J, van Smaalen S, Rotiroti N, et al. Crystal structure of Ca5Nb5O17. J Solid State Chem 2005, 178: 2934-2941.
[536]
Joseph T, Anjana PS, Letourneau S, et al. Structure and microwave dielectric properties of Ca5A4TiO17 (A = Nb, Ta) ceramics. Mater Chem Phys 2010, 121: 77-82.
[537]
Manan A, Iqbal Y. Influence of Sm substitution on the phase, microstructure and microwave dielectric properties of SrLa4Ti5O17. J Mater Sci: Mater Electron 2011, 22: 1848-1854.
[538]
Iqbal Y, Manan A, Reaney IM. Low loss Sr1-xCaxLa4Ti5O17 microwave dielectric ceramics. Mater Res Bull 2011, 46: 1092-1096.
[539]
Iqbal Y, Manan A. Phase, microstructure and microwave dielectric properties of Zr-doped SrLa4Ti5-xZrxO17. J Mater Sci: Mater Electron 2012, 23: 536-541.
[540]
Li CC, Wei XY, Yan HX, et al. Microwave dielectric properties of CaO-La2O3-Nb2O5-TiO2 ceramics. J Mater Sci: Mater Electron 2013, 24: 1947-1954.
[541]
Li CC, Wei XY, Yan HX, et al. Microwave dielectric properties of La3Ti2TaO11 ceramics with perovskite-like layered structure. J Eur Ceram Soc 2012, 32: 4015-4020.
[542]
Manan A, Reaney IM. The effect of processing conditions on the phase, microstructure and dielectric properties of SrCa4Nb4TiO17 and Ca5Nb4TiO17 microwave ceramics. Mater Sci Pol 2012, 30: 98-104.
[543]
Iqbal Y, Muhammad R. Phase, microstructure, and microwave dielectric properties of NaCa4-xSrxNb5O17 (x = 0 to 4) ceramics. J Electron Mater 2013, 42: 452-457.
[544]
Muhammad R, Iqbal Y. Preparation and characterization of K-substituted NaCa4Nb5O17 microwave dielectric ceramics. J Mater Sci: Mater Electron 2013, 24: 2322-2326.
[545]
Rejini R, Subodh G, Sebastian MT. Ca4La2Ti5O17: A novel low loss dielectric ceramics in the CaO-La2O3-TiO2 system. J Mater Sci: Mater Electron 2008, 19: 1153-1155.
[546]
Chen GH, Di JC, Xu HR, et al. Microwave dielectric properties of Ca4La2Ti5-x(Mg1/3Nb2/3)xO17 ceramics. J Am Ceram Soc 2012, 95: 1394-1397.
[547]
Di JC, Chen GH, Hou MZ, et al. Low loss and middle permittivity of (1-x)Ca4La2Ti5O17-xNdAlO3 dielectric resonators with near-zero temperature coefficient of the resonant frequency. J Mater Sci 2012, 47: 2271-2277.
[548]
Chen GH, Di JC, Li M, et al. Synthesis, microstructure and microwave dielectric properties of Ca4-xMgxLa2Ti5O17 ceramics. J Mater Sci: Mater Electron 2012, 23: 746-752.
[549]
Fang L, Li CC, Peng XY, et al. Sr4-mLamTim-1Ta4-mO12 (m = 1, 2, 3): A novel series of A4B3O12-type microwave ceramics with a high Q and low τf. J Am Ceram Soc 2010, 93: 1884-1887.
[550]
Fang L, Li CC, Peng XY, et al. Two novel A4B3O12-type microwave ceramics with high-Q and near-zero τf. J Mater Res 2010, 25: 1239-1242.
[551]
Suresh MK, John A, Thomas JK, et al. Structural, spectroscopic and dielectric investigations on Ba8Zn(Nb6-xSbx)O24 microwave ceramics. Mater Res Bull 2010, 45: 1389-1395.
[552]
Suresh MK, John A, Thomas JK, et al. Structural analysis and properties of thermally stable Ba8Mg(Nb6-xSbx)O24 microwave ceramics. J Alloys Compd 2011, 509: 2401-2406.
[553]
Solomon S, Suresh MK, Thomas JK, et al. Synthesis, structural analysis and dielectric properties of Ba8(Mg1-xZnx)Nb6O24 hexagonal perovskites. Ceram Int 2012, 38: 6487-6494.
[554]
Fang L, Su CX, Wei ZH, et al. Phase structure, band gap and microwave dielectric properties of Ba8Ti3Nb4-xSbxO24 ceramics. Ceram Int 2013, 39: 579-583.
[555]
Tian CL, Yue ZX, Zhou YY. Microstructures and microwave dielectric properties of Ba4LiNb3O12-BaWO4 composite ceramics. Mater Sci Eng: B 2013, 178: 178-182.
[556]
Zhou HF, Liu XB, Chen XL, et al. Ba4LiNb3-xSbxO12: Phase evolution, microstructure and optimized microwave dielectric properties. Mater Lett 2013, 96: 199-202.
[557]
Tang Y, Fang WS, Fang L, et al. Phase transformation and microwave dielectric properties of Ba4LiTa3-xSbxO12. Ceram Int 2015, 41: 6653-6656.
[558]
Liao W, Fang L, Xiang F, et al. Effect of Sb5+ substitution on the dielectric properties of Ba3LiTa3Ti5O21 ceramics. J Mater Sci: Mater Electron 2013, 24: 272-276.
[559]
Fang L, Liao W, Wu MX, et al. Microwave dielectric properties of Ba3LiNb3-xSbxTi5O21 (x = 0-3) ceramics. Mater Lett 2012, 76: 73-76.
[560]
Fang L, Wu MX, Liu QW, et al. High εr and low loss microwave dielectric ceramics Ba3LiNb3-xTaxTi5O21. Mater Chem Phys 2012, 136: 599-603.
[561]
Wang KG, Zhou HF, Luan XW, et al. Microwave dielectric properties of LiSmTa4O12 ceramics with A-site deficient perovskite structure. Mater Lett 2020, 274: 128020.
[562]
Fan XC, Chen XM, Liu XQ. Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: Crystal structure refinement and infrared reflectivity study. Chem Mater 2008, 20: 4092-4098.
[563]
Fan XC, Mao MM, Chen XM. Microstructures and microwave dielectric properties of the CaSmAlO4-based ceramics. J Am Ceram Soc 2008, 91: 2917-2922.
[564]
Yuan HX, Chen XM, Mao MM. Structure and microwave dielectric characteristics of Ca1+xNd1-xAl1-xTixO4 ceramics. J Am Ceram Soc 2009, 92: 2286-2290.
[565]
Mao MM, Fan XC, Chen XM. Effect of A-site ionic radius on the structure and microwave dielectric characteristics of Sr1+xSm1-xAl1-xTixO4 ceramics. Int J Appl Ceram Technol 2010, 7: E156-E162.
[566]
Zhang C, Yi L, Chen XM. Improvement of microwave dielectric characteristics in SrNdAlO4 ceramics by Ca-substitution. Ceram Int 2014, 40: 6077-6082.
[567]
Xiao Y, Chen XM, Liu XQ. Microstructures and microwave dielectric characteristics of CaRAlO4 (R = Nd, Sm, Y) ceramics with tetragonal K2NiF4 structure. J Am Ceram Soc 2004, 87: 2143-2146.
[568]
Mao MM, Chen XM. Infrared reflectivity spectra and microwave dielectric properties of (Sr1-xCax)SmAlO4 (0 ≤ x ≤ 1) ceramics. Int J Appl Ceram Technol 2011, 8: 1023-1030.
[569]
Mao MM, Chen XM, Liu XQ. Structure and microwave dielectric properties of solid solution in SrLaAlO4- Sr2TiO4 system. J Am Ceram Soc 2011, 94: 3948-3952.
[570]
Mao MM, Liu XQ, Chen XM. Structural evolution and its effects on dielectric loss in Sr1+xSm1-xAl1-xTixO4 microwave dielectric ceramics. J Am Ceram Soc 2011, 94: 2506-2511.
[571]
Liu B, Yi L, Liu XQ, et al. Structure and microwave dielectric properties of SrSmAlO4-Sr2TiO4 solid solutions. J Electroceramics 2015, 34: 114-121.
[572]
Liu B, Li L, Liu XQ, et al. Structural evolution of SrLaAl1-x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties. J Mater Chem C 2016, 4: 4684-4691.
[573]
Ren GR, Zhu JY, Li L, et al. SrLa(R0.5Ti0.5)O4 (R = Mg, Zn) microwave dielectric ceramics with complex K2NiF4-type layered perovskite structure. J Am Ceram Soc 2017, 100: 2582-2589.
[574]
Yan H, Chen GY, Li L, et al. Microwave dielectric properties of SrLa[Ga1-x(Mg0.5Ti0.5)x]O4 and SrLa[Ga1-x(Zn0.5Ti0.5)x]O4 (x = 0.2-0.8) ceramics. Int J Appl Ceram Technol 2020, 17: 790-796.
[575]
Manan A, Ullah R, Iqbal Y, et al. Tailoring the microwave dielectric properties of Sr0.6Ca0.4LaAlO4 ceramic by TiO2 addition. J Aust Ceram Soc 2020, 56: 1013-1019.
[576]
Liu B, Li L, Liu XQ, et al. Srn+1TinO3n+1 (n = 1, 2) microwave dielectric ceramics with medium dielectric constant and ultra-low dielectric loss. J Am Ceram Soc 2017, 100: 496-500.
[577]
Yuan ZQ, Liu B, Liu XQ, et al. Structure and microwave dielectric characteristics of Sr(La1-xSmx)2Al2O7 ceramics. RSC Adv 2016, 6: 96229-96236.
[578]
Liu B, Liu XQ, Chen XM. Sr2LaAlTiO7: A new Ruddlesden-Popper compound with excellent microwave dielectric properties. J Mater Chem C 2016, 4: 1720-1726.
[579]
Yi L, Li L, Liu XQ, et al. Structure evolution and enhanced microwave dielectric characteristics of (Sr1-xCax)La2Al2O7 ceramics. J Am Ceram Soc 2014, 97: 3531-3536.
[580]
Yi L, Liu XQ, Li L, et al. SrLn2Al2O7 (Ln = La, Nd, Sm) microwave dielectric ceramic new materials. Int J Appl Ceram Technol 2013, 10: E177-E185.
[581]
Dias A, Viegas JI, Moreira RL. Synthesis and μ-Raman scattering of Ruddlesden-Popper ceramics Sr3Ti2O7, SrLa2Al2O7 and Sr2LaAlTiO7. J Alloys Compd 2017, 725: 77-83.
[582]
Hameed I, Liu B, Li L, et al. (Sr1-xCax)2TiO4 microwave dielectric ceramics with R-P structure (x = 0-0.15). Int J Appl Ceram Technol 2019, 16: 2040-2046.
[583]
Liu B, Huang YH, Song KX, et al. Structural evolution and microwave dielectric properties in Sr2(Ti1-xSnx)O4 ceramics. J Eur Ceram Soc 2018, 38: 3833-3839.
[584]
Hameed I, Wu SY, Li L, et al. Structure and microwave dielectric characteristics of Sr2[Ti1-x(Al0.5Nb0.5)x]O4 (x ≤ 0.50) ceramics. J Am Ceram Soc 2019, 102: 6137-6146.
[585]
Xie MQ, Song XQ, Du K, et al. Improved microwave dielectric properties of the (Sr1-3x/2Lax)2Ti1-yCeyO4 ceramics. J Mater Sci: Mater Electron 2020, 31: 13541-13548.
[586]
Dai QL, Zuo RZ. A novel ultralow-loss Sr2CeO4 microwave dielectric ceramic and its property modification. J Eur Ceram Soc 2019, 39: 1132-1136.
[587]
Wang Y, Tang TL, Li MX, et al. Ce0.75Y0.25O1.875: New temperature-stable microwave dielectric ceramics with high Q values for microwave application. Ceram Int 2020, 46: 6984-6986.
[588]
Ullah A, Liu HX, Manan A, et al. Microwave dielectric properties of Bi2(Li0.5Ta1.5)O7-TiO2-based ceramics for 5G cellular base station resonator application. Ceram Int 2021, 47: 8416-8423.
[589]
Wang ZJ, Chen Y. Structures and microwave dielectric properties of Ti-doped CeO2 ceramics with a near-zero temperature coefficient of resonant frequency. J Alloys Compd 2021, 854: 157270.
[590]
Du C, Guo HH, Zhou D, et al. Dielectric resonator antennas based on high quality factor MgAl2O4 transparent dielectric ceramics. J Mater Chem C 2020, 8: 14880-14885.
[591]
Qin TY, Zhong CW, Qin Y, et al. The structure evolution and microwave dielectric properties of MgAl2-x(Mg0.5Ti0.5)xO4 solid solutions. Ceram Int 2020, 46: 19046-19051.
[592]
Liu B, Song KX. Vibrational spectroscopy and microwave dielectric properties of two novel Ca3Ln2W2O12 (Ln = La, Sm) tungstate ceramics. Mater Res Bull 2021, 133: 111022.
[593]
Hu S, Zhou HF, Zhou XJ, et al. Phase structure, sintering behaviour and microwave dielectric properties of Ln2MoO6 (Ln = La and Y) ceramics. Ceram Int 2020, 46: 24552-24556.
[594]
Kim E, Huang K, Jegelka S, et al. Virtual screening of inorganic materials synthesis parameters with deep learning. npj Comput Mater 2017, 3: 53.
[595]
Raccuglia P, Elbert KC, Adler PDF, et al. Machine- learning-assisted materials discovery using failed experiments. Nature 2016, 533: 73-76.
[596]
Weng BC, Song ZL, Zhu RL, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat Commun 2020, 11: 3513.
[597]
Kim C, Pilania G, Ramprasad R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J Phys Chem C 2016, 120: 14575-14580.
[598]
Xue D, Balachandran PV, Yuan R, et al. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. PNAS 2016, 113: 13301-13306.
[599]
Sun YT, Bai HY, Li MZ, et al. Machine learning approach for prediction and understanding of glass-forming ability. J Phys Chem Lett 2017, 8: 3434-3439.
[600]
Kim C, Pilania G, Ramprasad R. From organized high-throughput data to phenomenological theory using machine learning: The example of dielectric breakdown. Chem Mater 2016, 28: 1304-1311.
[601]
Qin JC, Liu ZF, Ma MS, et al. Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics. J Materiomics 2021, .
[602]
Qin J, Liu Z, Ma M, et al. Structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A = Ca, Sr, Ba) ceramics and quantitative prediction of the Q × f value via machine learning. ACS Appl Mater Interfaces 2021, 13: 17817-17826.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 April 2021
Revised: 04 June 2021
Accepted: 06 June 2021
Published: 11 October 2021
Issue date: October 2021

Copyright

© The Author(s) 2021

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51872037).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permission requests may be sought directly from editorial office.

Return