821
Views
191
Downloads
21
Crossref
20
WoS
21
Scopus
0
CSCD
Finding the optimum balance between strength and toughness, as well as acquiring reliable thermal shock resistance and oxidation resistance, has always been the most concerned topic in the discussion of ultra-high temperature ceramic composites. Herein, PyC modified 3D carbon fiber is used to reinforce ultra-high temperature ceramic (UHTC). The macroscopic block composite with large size is successfully fabricated through low temperature sintering at 1300 ℃ without pressure. The prepared PyC modified 3D Cf/ZrC-SiC composites simultaneously possess excellent physical and chemical stability under the synergistic effect of PyC interface layer and low temperature sintering without pressure. The fracture toughness is increased in magnitude to 13.05 ± 1.72 MPa·m1/2 accompanied by reliable flexural strength of 251 ± 27 MPa. After rapid thermal shock spanning from room temperature (RT) to 1200 ℃, there are no visible surface penetrating cracks, spalling, or structural fragmentation. The maximum critical temperature difference reaches 875 ℃, which is nearly three times higher than that of traditional monolithic ceramics. The haunting puzzle of intrinsic brittleness and low damage tolerance are resolved fundamentally. Under the protection of PyC interface layer, the carbon fibers around oxide layer and matrix remain structure intact after static oxidation at 1500 ℃ for 30 min. The oxide layer has reliable physical and chemical stability and resists the erosion from fierce oxidizing atmosphere, ensuring the excellent oxidation resistance of the composites. In a sense, the present work provides promising universality in designability and achievement of 3D carbon fiber reinforced ceramic composites.
Finding the optimum balance between strength and toughness, as well as acquiring reliable thermal shock resistance and oxidation resistance, has always been the most concerned topic in the discussion of ultra-high temperature ceramic composites. Herein, PyC modified 3D carbon fiber is used to reinforce ultra-high temperature ceramic (UHTC). The macroscopic block composite with large size is successfully fabricated through low temperature sintering at 1300 ℃ without pressure. The prepared PyC modified 3D Cf/ZrC-SiC composites simultaneously possess excellent physical and chemical stability under the synergistic effect of PyC interface layer and low temperature sintering without pressure. The fracture toughness is increased in magnitude to 13.05 ± 1.72 MPa·m1/2 accompanied by reliable flexural strength of 251 ± 27 MPa. After rapid thermal shock spanning from room temperature (RT) to 1200 ℃, there are no visible surface penetrating cracks, spalling, or structural fragmentation. The maximum critical temperature difference reaches 875 ℃, which is nearly three times higher than that of traditional monolithic ceramics. The haunting puzzle of intrinsic brittleness and low damage tolerance are resolved fundamentally. Under the protection of PyC interface layer, the carbon fibers around oxide layer and matrix remain structure intact after static oxidation at 1500 ℃ for 30 min. The oxide layer has reliable physical and chemical stability and resists the erosion from fierce oxidizing atmosphere, ensuring the excellent oxidation resistance of the composites. In a sense, the present work provides promising universality in designability and achievement of 3D carbon fiber reinforced ceramic composites.
This work was supported by Key Program of National Natural Science Foundation of China (No. 52032003), National Natural Science Foundation of China (Nos. 51872059 and 51772061), Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (No. 6142905202112), China Postdoctoral Science Foundation (No. 2021M690817), and Heilongjiang Provincial Postdoctoral Science Foundation (No. LBH-Z20144).
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.