556
Views
75
Downloads
17
Crossref
14
WoS
16
Scopus
0
CSCD
Exploring outstanding rare-earth activated inorganic phosphors with good thermostability has always been a research focus for high-power white light-emitting diodes (LEDs). In this study, we report a Sm3+-activated KNa4B2P3O13 (KNBP) powder phase. Its particle morphology, photoluminescence properties, concentration quenching mechanism, thermal quenching mechanism, and chromatic properties are demonstrated. Upon the near-ultraviolet (NUV) irradiation of 402 nm, the powder phase exhibits orange-red visible luminescence performance, originating from typical 4G5/2→6HJ/2 (J = 5, 7, 9) transitions of Sm3+. Importantly, the photoluminescence performance has good thermostability, low correlated color temperature (CCT), and high color purity (CP), indicating its promising application in the NUV-pumped warm white LEDs.
Exploring outstanding rare-earth activated inorganic phosphors with good thermostability has always been a research focus for high-power white light-emitting diodes (LEDs). In this study, we report a Sm3+-activated KNa4B2P3O13 (KNBP) powder phase. Its particle morphology, photoluminescence properties, concentration quenching mechanism, thermal quenching mechanism, and chromatic properties are demonstrated. Upon the near-ultraviolet (NUV) irradiation of 402 nm, the powder phase exhibits orange-red visible luminescence performance, originating from typical 4G5/2→6HJ/2 (J = 5, 7, 9) transitions of Sm3+. Importantly, the photoluminescence performance has good thermostability, low correlated color temperature (CCT), and high color purity (CP), indicating its promising application in the NUV-pumped warm white LEDs.
This study is financially supported by the National Natural Science Foundation of China (Nos. 21761034 and 22165031), the Open Foundation of Key Laboratory for Micro/Nano Materials & Technology of Yunnan Province (No. 2021KF01), and the Program for Excellent Young Talents, Yunnan University. We thank Advanced Analysis and Measurement Center of Yunnan University for the sample testing service.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.