890
Views
229
Downloads
34
Crossref
N/A
WoS
38
Scopus
4
CSCD
High-entropy boride-silicon carbide (HEB-SiC) ceramics were fabricated using boride-based powders prepared from borothermal and boro/carbothermal reduction methods. The effects of processing routes (borothermal reduction and boro/carbothermal reduction) on the HEB powders were examined. HEB-SiC ceramics with > 98% theoretical density were prepared by spark plasma sintering at 2000 ℃. It was demonstrated that the addition of SiC led to slight coarsening of the microstructure. The HEB-SiC ceramics prepared from boro/carbothermal reduction powders showed a fine-grained microstructure and higher Vickers’ hardness but lower fracture toughness value as compared with the same composition prepared from borothermal reduction powders. These results indicated that the selection of the powder processing method and the addition of SiC phase could contribute to the optimal preparation of high-entropy boride-based ceramics.
High-entropy boride-silicon carbide (HEB-SiC) ceramics were fabricated using boride-based powders prepared from borothermal and boro/carbothermal reduction methods. The effects of processing routes (borothermal reduction and boro/carbothermal reduction) on the HEB powders were examined. HEB-SiC ceramics with > 98% theoretical density were prepared by spark plasma sintering at 2000 ℃. It was demonstrated that the addition of SiC led to slight coarsening of the microstructure. The HEB-SiC ceramics prepared from boro/carbothermal reduction powders showed a fine-grained microstructure and higher Vickers’ hardness but lower fracture toughness value as compared with the same composition prepared from borothermal reduction powders. These results indicated that the selection of the powder processing method and the addition of SiC phase could contribute to the optimal preparation of high-entropy boride-based ceramics.
This work was financially supported by State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (No. 19ZK0113), the Pearl River S and T Nova Program of Guangzhou (No. 201710010142), Science and Technology Planning Project of Guangdong Province (No. 2017A050501033), National Natural Science Foundation of China (Nos. 51402055, 51602060, and U1401247), and Guangdong Innovative and Entrepreneurial Research Team Program (Nos. 2013G061 and 2014YT02C049).
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.