References(89)
[1]
DDL Chung. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39: 279-285.
[2]
CL Holloway, RR DeLyser, RF German, et al. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Trans Electromagn Compat 1997, 39: 33-47.
[3]
C Wang, V Murugadoss, J Kong, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140: 696-733.
[4]
YJ Jia, MAR Chowdhury, DJ Zhang, et al. Wide-band tunable microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramics. ACS Appl Mater Interfaces 2019, 11: 45862-45874.
[5]
ZR Jia, KJ Lin, GL Wu, et al. Recent progresses of high-temperature microwave-absorbing materials. Nano 2018, 13: 1830005.
[6]
JL Wallace. Broadband magnetic microwave absorbers: Fundamental limitations. IEEE Trans Magn 1993, 29: 4209-4214.
[7]
LL Adebayo, H Soleimani, N Yahya, et al. Recent advances in the development of Fe3O4-based microwave absorbing materials. Ceram Int 2020, 46: 1249-1268.
[8]
NN Wu, C Liu, DM Xu, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem Eng 2018, 6: 12471-12480.
[9]
YJ Li, M Yu, PG Yang, et al. Enhanced microwave absorption property of Fe nanoparticles encapsulated within reduced graphene oxide with different thicknesses. Ind Eng Chem Res 2017, 56: 8872-8879.
[10]
Q Liu, H Liu, M Han, et al. Nanometer-sized nickel hollow spheres. Adv Mater 2005, 17: 1995-1999.
[11]
Y Zhang, Y Huang, TF Zhang, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 2015, 27: 2049-2053.
[12]
LL Yan, XX Wang, SC Zhao, et al. Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl Mater Interfaces 2017, 9: 11116-11125.
[13]
P Zhang, XJ Han, LL Kang, et al. Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv 2013, 3: 12694-12701.
[14]
S Kumar, R Chatterjee. Complex permittivity, permeability, magnetic and microwave absorbing properties of Bi3+ substituted U-type hexaferrite. J Magn Magn Mater 2018, 448: 88-93.
[15]
K Park, S Lee, C Kim, et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos Sci Technol 2006, 66: 576-584.
[16]
M Zong, Y Huang, X Ding, et al. One-step hydrothermal synthesis and microwave electromagnetic properties of RGO/NiFe2O4 composite. Ceram Int 2014, 40: 6821-6828.
[17]
VM Petrov, VV Gagulin. Microwave absorbing materials. Inorg Mater 2001, 37: 93-98.
[18]
J Etourneau, P Hagenmuller. Structure and physical features of the rare-earth borides. Philos Mag B 1985, 52: 589-610.
[19]
HC Longuet-Higgins, MDV Roberts. The electronic structure of the borides MB6. Proc R Soc Lond A 1954, 224: 336-347.
[20]
M Yamazaki. Group-theoretical treatment of the energy bands in metal borides MeB6. J Phys Soc Jpn 1957, 12: 1-6.
[21]
MC Aronson, JL Sarrao, Z Fisk, et al. Fermi surface of the ferromagnetic semimetal, EuB6. Phys Rev B 1999, 59: 4720-4724.
[22]
PF Walch, DE Ellis, FM Mueller. Energy bands and bonding in LaB6 and YB6. Phys Rev B 1977, 15: 1859-1866.
[23]
SS Kher, JT Spencer. Chemical vapor deposition of metal borides. J Phys Chem Solids 1998, 59: 1343-1351.
[24]
KE Spear. Phase behavior and related properties of rare-earth borides. In Phase Diagrams: Materials Science and Technology. AM Alper, Ed. New York: Academic Press, 1976: 91-159.
[25]
JP Mercurio, J Etourneau, R Naslain, et al. Electrical and magnetic properties of some rare-earth hexaborides. J Less-Common Met 1976, 47: 175-180.
[26]
IDR MacKinnon, JA Alarco, PC Talbot. Metal hexaborides with Sc, Ti or Mn. Model Numer Simul Mater Sci 2013, 3: 158-169.
[27]
R Bachmann, KN Lee, TH Geballe, et al. Spin scattering and magnetic ordering in EuB6. J Appl Phys 1970, 41: 1431-1432.
[28]
TH Geballe, BT Matthias, K Andres, et al. Magnetic ordering in the rare-earth hexaborides. Science 1968, 160: 1443-1444.
[29]
Jr Hacker. H, Shimada Y, Chung KS. Magnetic properties of CeB6, PrB6, EuB6, and GdB6. Phys Stat Sol (a) 1971, 4: 459-465.
[30]
K Matsubayashi, M Maki, T Tsuzuki, et al. Parasitic ferromagnetism in a hexaboride? Nature 2002, 420: 143-144.
[31]
BT Matthias, TH Geballe, K Andres, et al. Superconductivity and antiferromagnetism in boron-rich lattices. Science 1968, 159: 530.
[32]
DP Young, D Hall, ME Torelli, et al. High-temperature weak ferromagnetism in a low-density free-electron gas. Nature 1999, 397: 412-414.
[33]
GH Olsen, AV Cafiero. Single-crystal growth of mixed (La, Eu, Y, Ce, Ba, Cs) hexaborides for thermionic emission. J Cryst Growth 1978, 44: 287-290.
[34]
Y Liu, WJ Lu, JN Qin, et al. A new route for the synthesis of NdB6 powder from Nd2O3-B4C system. J Alloys Compd 2007, 431: 337-341.
[35]
M Hasan, H Sugo, E Kisi. Low temperature carbothermal and boron carbide reduction synthesis of LaB6. J Alloys Compd 2013, 578: 176-182.
[36]
CM Rost, E Sachet, T Borman, et al. Entropy-stabilized oxides. Nat Commun 2015, 6: 8485.
[37]
JL Braun, CM Rost, M Lim, et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv Mater 2018, 30: 1805004.
[38]
ZF Zhao, HM Xiang, FZ Dai, et al. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity. J Mater Sci Technol 2019, 35: 2227-2231.
[39]
H Chen, HM Xiang, FZ Dai, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J Mater Sci Technol 2019, 35: 1700-1705.
[40]
H Chen, HM Xiang, FZ Dai, et al. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J Mater Sci Technol 2020, 36: 134-139.
[41]
ZF Zhao, H Chen, HM Xiang, et al. (Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: A defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3. J Mater Sci Technol 2020, 39: 167-172.
[42]
ZF Zhao, H Chen, HM Xiang, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. J Adv Ceram 2020, 9: 303-311.
[43]
H Chen, B Zhao, ZF Zhao, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. J Mater Sci Technol 2020, 47: 216-222.
[44]
RD Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 1976, 32: 751-767.
[45]
A Sarkar, C Loho, L Velasco, et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans 2017, 46: 12167-12176.
[46]
PA Miles, WB Westphal, A von Hippel. Dielectric spectroscopy of ferromagnetic semiconductors. Rev Mod Phys 1957, 29: 279-307.
[47]
M Green, Z Liu, P Xiang, et al. Ferric metal-organic framework for microwave absorption. Mater Today Chem 2018, 9: 140-148.
[48]
YC Zhou, FZ Dai, HM Xiang, et al. Shear anisotropy: Tuning high temperature metal hexaborides from soft to extremely hard. J Mater Sci Technol 2017, 33: 1371-1377.
[49]
YC Zhou, B Liu, HM Xiang, et al. YB6: A ‘ductile’ and soft ceramic with strong heterogeneous chemical bonding for ultrahigh-temperature applications. Mater Res Lett 2015, 3: 210-215.
[50]
GE Grechnev, AE Baranovskiy, VD Fil, et al. Electronic structure and bulk properties of MB6 and MB12 borides. Low Temp Phys 2008, 34: 921-929.
[51]
JP Mercurio, J Etourneau, R Naslain, et al. Electrical and magnetic properties of some rare-earth hexaborides. J Less-Common Met 1976, 47: 175-180.
[52]
J Kuneš, WE Pickett. Kondo and anti-Kondo coupling to local moments in EuB6. Phys Rev B 2004, 69: 165111.
[53]
LH Tian, XD Yan, JL Xu, et al. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J Mater Chem A 2015, 3: 12550-12556.
[54]
YP Duan, Z Liu, H Jing, et al. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J Mater Chem 2012, 22: 18291-18299.
[55]
F Ye, Q Song, ZC Zhang, et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv Funct Mater 2018, 28: 1707205.
[56]
T Prodromakis, C Papavassiliou. Engineering the Maxwell-Wagner polarization effect. Appl Surf Sci 2009, 255: 6989-6994.
[57]
D O’Neill, RM Bowman, JM Gregg. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Appl Phys Lett 2000, 77: 1520-1522.
[58]
NN Wang, F Wu, AM Xie, et al. One-pot synthesis of biomass-derived carbonaceous spheres for excellent microwave absorption at the Ku band. RSC Adv 2015, 5: 40531-40535.
[59]
PH Fang. Cole-Cole diagram and the distribution of relaxation times. J Chem Phys 1965, 42: 3411-3413.
[60]
P Wang, XM Wang, L Qiao, et al. High-frequency magnetic properties and microwave absorption performance of oxidized Pr2Co17 flakes/epoxy composite in X-band. J Magn Magn Mater 2018, 468: 193-199.
[61]
YP Duan, HT Guan. Microwave Absorbing Materials. New York: Jenny Stanford, 2016.
[62]
YX Li, JY Wang, RG Liu, et al. Dependence of gigahertz microwave absorption on the mass fraction of Co@C nanocapsules in composite. J Alloys Compd 2017, 724: 1023-1029.
[63]
B Zhao, WY Zhao, G Shao, et al. Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 2015, 7: 12951-12960.
[64]
FB Meng, R Zhao, YQ Zhan, et al. Preparation and microwave absorption properties of Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres. Appl Surf Sci 2011, 257: 5000-5006.
[65]
NN Wu, C Liu, DM Xu, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem Eng 2018, 6: 12471-12480.
[66]
Y Liu, YW Fu, L Liu, et al. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl Mater Interfaces 2018, 10: 16511-16520.
[67]
M Almasi-Kashi, MH Mokarian, S Alikhanzadeh-Arani. Improvement of the microwave absorption properties in FeNi/PANI nanocomposites fabricated with different structures. J Alloys Compd 2018, 742: 413-420.
[68]
XL Su, J Ning, Y Jia, et al. Flower-like MoS2 nanospheres: A promising material with good microwave absorption property in the frequency range of 8.2-12.4 GHz. Nano 2018, 13: 1850084.
[69]
JH Chen, M Liu, T Yang, et al. Improved microwave absorption performance of modified SiC in the 2-18 GHz frequency range. CrystEngComm 2017, 19: 519-527.
[70]
S Farhan, RM Wang, KZ Li. Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires. Ceram Int 2016, 42: 11330-11340.
[71]
MK Han, XW Yin, ZX Hou, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl Mater Interfaces 2017, 9: 11803-11810.
[72]
Y Jiang, Y Chen, YJ Liu, et al. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem Eng J 2018, 337: 522-531.
[73]
A Kumar, V Agarwala, D Singh. Effect of milling on dielectric and microwave absorption properties of SiC based composites. Ceram Int 2014, 40: 1797-1806.
[74]
CG Hu, ZY Mou, GW Lu, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 2013, 15: 13038-13043.
[75]
YZ Wan, J Xiao, CZ Li, et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J Magn Magn Mater 2016, 399: 252-259.
[76]
L Zhang, H Zhu, Y Song, et al. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers. Mater Sci Eng: B 2008, 153: 78-82.
[77]
DL Zhao, X Li, ZM Shen. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J Alloys Compd 2009, 471: 457-460.
[78]
ZT Zhu, X Sun, GX Li, et al. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J Magn Magn Mater 2015, 377: 95-103.
[79]
M Green, LH Tian, P Xiang, et al. FeP nanoparticles: A new material for microwave absorption. Mater Chem Front 2018, 2: 1119-1125.
[80]
WD Zhang, X Zhang, HJ Wu, et al. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J Alloys Compd 2018, 751: 34-42.
[81]
PB Liu, Y Huang, X Zhang. Cubic NiFe2O4 particles on graphene-polyaniline and their enhanced microwave absorption properties. Compos Sci Technol 2015, 107: 54-60.
[82]
W She, H Bi, ZW Wen, et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography. ACS Appl Mater Interfaces 2016, 8: 9782-9789.
[83]
HB Yang, T Ye, Y Lin, et al. Excellent microwave absorption property of ternary composite: Polyaniline-BaFe12O19-CoFe2O4 powders. J Alloys Compd 2015, 653: 135-139.
[84]
YC Qing, WC Zhou, F Luo, et al. Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption. J Magn Magn Mater 2011, 323: 600-606.
[85]
Y Yang, CL Xu, YX Xia, et al. Synthesis and microwave absorption properties of FeCo nanoplates. J Alloys Compd 2010, 493: 549-552.
[86]
SB Ni, XL Sun, XH Wang, et al. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater Chem Phys 2010, 124: 353-358.
[87]
T Wu, Y Liu, X Zeng, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl Mater Interfaces 2016, 8: 7370-7380.
[88]
Z Xiang, YM Song, J Xiong, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 2019, 142: 20-31.
[89]
DL Zhao, Q Lv, ZM Shen. Fabrication and microwave absorbing properties of Ni-Zn spinel ferrites. J Alloys Compd 2009, 480: 634-638.