In the last two decades, structure and properties of Ruddlesden–Popper phase (RP) A2BO4 oxides with K2NiF4 structure, have been widely investigated. But to the best of our knowledge, no review article is available in the literature on recent studies on these oxides. Therefore, in this article, recent studies on structure, electrical, dielectric, and optical properties of these oxides have been reviewed. Special attention is put on to highlight the effect of doping and oxygen stoichiometry on the structure and properties of these oxides. Further, important applications of these oxides have also been mentioned in this article.
Ruddlesden-Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties
Show Author's information
Hide Author's Information
Gurudeo NIRALA, Dharmendra YADAV, Shail UPADHYAY(
)
Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005, India
Abstract
In the last two decades, structure and properties of Ruddlesden–Popper phase (RP) A2BO4 oxides with K2NiF4 structure, have been widely investigated. But to the best of our knowledge, no review article is available in the literature on recent studies on these oxides. Therefore, in this article, recent studies on structure, electrical, dielectric, and optical properties of these oxides have been reviewed. Special attention is put on to highlight the effect of doping and oxygen stoichiometry on the structure and properties of these oxides. Further, important applications of these oxides have also been mentioned in this article.
FE Bates, JE Eldridge. Normal modes of tetragonal La2NiO4 and La2CuO4, isomorphs of the hight Tc superconductor La2–xSrxCuO4. Solid State Commun 1989, 72: 187-190.
G Burns, FH Dacol, G Kliche, et al. Raman and infrared studies of Sr2TiO4: A material isomorphic to (La,Sr)2CuO4 superconductors. Phys Rev B 1988, 37: 3381-3388.
XL Wang, E Takayama-Muromachi, SX Dou, et al. Band structures, magnetic properties, and enhanced magnetoresistance in the high pressure phase of Gd and Y doped two-dimensional perovskite Sr2CoO4 compounds. Appl Phys Lett 2007, 91: 062501.
R Goodrich, D Hall, E Palm, et al. Magnetoresistance below 1 K and temperature cycling of ruthenium oxide–bismuth ruthenate cryogenic thermometers. Cryogenics 1998, 38: 221-225.
M Zhu, J Peng, T Zou, et al. Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator–metal transition. Phys Rev Lett 2016, 116: 216401.
E Pikalova, VA Sadykov, EA Filonova, et al. Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4. Solid State Ionics 2019, 335: 53-60.
VN Chaudhari, AP Khandale, SS Bhoga. Sr-doped Sm2CuO4 cathode for intermediate temperature solid oxide fuel cells. Solid State Ionics 2014, 268: 140-149.
AV Kovalevsky, VV Kharton, AA Yaremchenko, et al. Stability and oxygen transport properties of Pr2NiO4+δ ceramics. J Eur Ceram Soc 2007, 27: 4269-4272.
WZ Yang, CL Song, XQ Liu, et al. Dielectric relaxation and polaronic hopping in the single-layered perovskite La1.5Sr0.5CoO4 ceramics. J Mater Sci 2011, 46: 6339-6343.
G Liu, TT Chen, J Wang, et al. Effect of excess oxygen on crystal structures and dielectric responses of Nd2NiO4+δ ceramics. J Alloys Compd 2013, 579: 502-506.
B Liu, L Li, XQ Liu, et al. Structural evolution of SrLaAl1–x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties. J Mater Chem C 2016, 4: 4684-4691.
GY Chen, GR Ren, L Li, et al. Structure and microwave dielectric properties of SrLa[Al1−x(Mg0.5Ti0.5)x]O4 (x = 0.2–0.8) ceramics. Ceram Int 2018, 44: 1984-1990.
MM Mao, XM Chen, XQ Liu. Structure and microwave dielectric properties of solid solution in SrLaAlO4–Sr2TiO4 system. J Am Ceram Soc 2011, 94: 3948-3952.
M Sahu, SK Gupta, D Jain, et al. Solid state speciation of uranium and its local structure in Sr2CeO4 using photoluminescence spectroscopy. Spectrochim Acta Part A: Mol Biomol Spectrosc 2018, 195: 113-119.
J Li, X Li, SL Hu, et al. Photoluminescence mechanisms of color-tunable Sr2CeO4:Eu3+,Dy3+ phosphors based on experimental and first-principles investigation. Opt Mater 2013, 35: 2309-2313.
N Labhasetwar, G Saravanan, S Kumar Megarajan, et al. Perovskite-type catalytic materials for environmental applications. Sci Technol Adv Mater 2015, 16: 036002.
A Schön, C Dujardin, JP Dacquin, et al. Enhancing catalytic activity of perovskite-based catalysts in three-way catalysis by surface composition optimisation. Catal Today 2015, 258: 543-548.
KH Lee, H Ohta, K Koumoto, Thermoelectric properties of layered perovskite-type Nb-doped SrO(SrTiO3)n (n = 1, 2) ruddlesden-popper phases, In: Proceedings of the 2006 25th International Conference on Thermoelectrics, 2006: 81-84.
Q Li, H Zhao, LH Huo, et al. Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs. Electrochem Commun 2007, 9: 1508-1512.
T Ghorbani-Moghadam, A Kompany, MM Bagheri-Mohagheghi, et al. High temperature electrical conductivity and electrochemical investigation of La2–xSrxCoO4 nanoparticles for IT-SOFC cathode. Ceram Int 2018, 44: 21238-21248.
M Garali, M Kahlaoui, B Mohammed, et al. Synthesis, characterization and electrochemical properties of La2–xEuxNiO4+δ ruddlesden-popper-type layered nickelates as cathode materials for SOFC applications. Int J Hydrogen Energ 2019, 44: 11020-11032.
MV Sandoval, C Pirovano, E Capoen, et al. In-depth study of the Ruddlesden–Popper LaxSr2–xMnO4±δ family as possible electrode materials for symmetrical SOFC. Int J Hydrogen Energ 2017, 42: 21930-21943.
DL Monika, H Nagabhushana, RH Krishna, et al. Synthesis and photoluminescence properties of a novel Sr2CeO4:Dy3+ nanophosphor with enhanced brightness by Li+ co-doping. RSC Adv 2014, 4: 38655-38662.
M Srinivas, B Appa Rao, M Vithal, et al. Luminescence properties of Tb3+ doped Sr2SnO4 green phosphor in UV/VUV regions. Luminescence 2013, 28: 597-601.
K Meeporn, N Chanlek, P Thongbai. Effects of DC bias on non-ohmic sample-electrode contact and grain boundary responses in giant-permittivity La1.7Sr0.3Ni1–xMgxO4 ceramics. RSC Adv 2016, 6: 91377-91385.
I Spanopoulos, I Hadar, WJ Ke, et al. Uniaxial expansion of the 2D Ruddlesden–Popper perovskite family for improved environmental stability. J Am Chem Soc 2019, 141: 5518-5534.
P Ganguly, CNR Rao. Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures. J Solid State Chem 1984, 53: 193-216.
CNR Rao, P Ganguly, KK Singh, et al. A comparative study of the magnetic and electrical properties of perovskite oxides and the corresponding two-dimensional oxides of K2NiF4 structure. J Solid State Chem 1988, 72: 14-23.
H Wilhelm, C Cros, E Reny, et al. Pressure-induced structural phase transitions in Ln2–xNdxCuO4 for Ln=La (0.6≤x≤2) and Ln=Pr (x=0). J Solid State Chem 2000, 151: 231-240.
J Rodriguez-Carvajal, MT Fernandez-Diaz, JL Martinez. Neutron diffraction study on structural and magnetic properties of La2NiO4. J Phys: Condens Matter 1991, 3: 3215-3234.
C Allanyon, J Rodríguez-Carvajal, MT Fernández-Díaz, et al. Crystal structure of the high temperature phase of oxidised Pr2NiO4+δ. Z Phys B - Condensed Matter 1996, 100: 85-90.
A Flura, S Dru, C Nicollet, et al. Chemical and structural changes in Ln2NiO4+δ (Ln=La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature. J Solid State Chem 2015, 228: 189-198.
J Choisnet, P Mouron, M Crespin, et al. Perovskite-like intergrowth structure of the reduced cuprate Nd2CuO3.5: A combination of defect and excess oxygen non-stoichiometry phenomena. J Mater Chem 1994, 4: 895-898.
T Broux, M Bahout, O Hernandez, et al. Reduction of Sr2MnO4 investigated by high temperature in situ neutron powder diffraction under hydrogen flow. Inorg Chem 2013, 52: 1009-1017.
LP Sun, Q Li, H Zhao, et al. Preparation and electrochemical properties of Sr-doped Nd2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources 2008, 183: 43-48.
H Kanai, J Mizusaki, H Tagawa, et al. Defect chemistry of La2–xSrxCuO4–δ: Oxygen nonstoichiometry and thermodynamic stability. J Solid State Chem 1997, 131: 150-159.
AP Khandale, SS Bhoga, RV Kumar. Effect of Ni doping on structural, electrical and electrochemical properties of Nd1.8Ce0.2Cu1–xNixO4+δ mixed ionic–electronic conductor. Solid State Ionics 2013, 238: 1-6.
AP Khandale, MG Bansod, SS Bhoga. Improved electrical and electrochemical performance of co-doped Nd1.8Sr0.2Ni1–xCuxO4+δ. Solid State Ionics 2015, 276: 127-135.
AP Khandale, SS Bhoga. Electrochemical performance of Nd1.8Ce0.2CuO4±δ mixed-ionic–electronic conductor for intermediate solid oxide fuel cells. Solid State Ionics 2011, 182: 82-90.
CNR Rao, DJ Buttrey, N Otsuka, et al. Crystal structure and semiconductor-metal transition of the quasi-two-dimensional transition metal oxide, La2NiO4. J Solid State Chem 1984, 51: 266-269.
AV Nikonov, KA Kuterbekov, K Bekmyrza, et al. A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian J Phys Funct Mater 2018, 2: 274-292.
AR Cleave, JA Kilner, SJ Skinner, et al. Atomistic computer simulation of oxygen ion conduction mechanisms in La2NiO4. Solid State Ionics 2008, 179: 823-826.
W Norimatsu, Y Koyama. Evolution of orthorhombic domain structures during the tetragonal-to-orthorhombic phase transition in the layered perovskite Sr2–xLaxMnO4. Phys Rev B 2006, 74: 085113.
McCabeEE, GreavesC. Synthesis and structural and magnetic characterization of mixed manganese–copper n = 1 ruddlesden–popper phases. Chem Mater2006, 18: 5774-5781.10.1021/cm061661j
A Paolone, P Giura, P Calvani, et al. Charge-localization effects in the infrared transmittance of layered perovskites. Phys B: Condens Matter 1998, 244: 33-40.
A Midouni, MI Houchati, WB Othman, et al. Influence of nickel doping on oxygen-ionic conductivity of the n = 1 Ruddlesden–Popper phases La1.85Ca0.15(Cu1–xNix)O4–δ (δ=0.0905). J Solid State Chem 2016, 240: 101-108.
A Chroneos, B Yildiz, A Tarancón, et al. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: Mechanistic insights from atomistic simulations. Energy Environ Sci 2011, 4: 2774-2789.
A Chroneos, D Parfitt, JA Kilner, et al. Anisotropic oxygen diffusion in tetragonal La2NiO4+δ: Molecular dynamics calculations. J Mater Chem 2010, 20: 266-270.
R Sayers, RA de Souza, JA Kilner, et al. Low temperature diffusion and oxygen stoichiometry in lanthanum nickelate. Solid State Ionics 2010, 181: 386-391.
H Shirani-Faradonbeh, MH Paydar. Electrical behavior of the Ruddlesden–Popper phase, (Nd0.9La0.1)2Ni0.75Cu0.25O4 (NLNC) and NLNC–x wt% Sm0.2Ce0.8O1.9 (SDC) (x=10, 30 and 50), as intermediate-temperature solid oxide fuel cells cathode. Ceram Int 2018, 44: 1971-1977.
SL Li, HY Tu, F Li, et al. Investigation of Nd2Ni0.9M0.1O4+δ (M=Ni, Co, Cu, Fe, and Mn) cathodes for intermediate-temperature solid oxide fuel cell. J Alloys Compd 2017, 694: 17-23.
K Zheng, K Świerczek. Evaluation of La2Ni0.5Cu0.5O4+δ and Pr2Ni0.5Cu0.5O4+δ ruddlesden-popper-type layered oxides as cathode materials for solid oxide fuel cells. Mater Res Bull 2016, 84: 259-266.
YP Wang, Q Xu, DP Huang, et al. Survey on electrochemical properties of La2−xSrxNiO4±δ (x=0.2 and 0.8, δ>0) cathodes related with structural stability under cathodic polarization conditions. Int J Hydrogen Energ 2017, 42: 6290-6302.
SS Bhoga, AP Khandale, BS Pahune. Investigation on Pr2–xSrxNiO4+δ (x=0.3–1.0) cathode materials for intermediate temperature solid oxide fuel cell. Solid State Ionics 2014, 262: 340-344.
MB Bansod, AP Khandale, RV Kumar, et al. Crystal structure, electrical and electrochemical properties of Cu co-doped Pr1.3Sr0.7NiO4+δ mixed ionic-electronic conductors (MIECs). Int J Hydrogen Energ 2018, 43: 373-384.
VN Chaudhari, AP Khandale, SS Bhoga. An investigation on strontium doped Sm2NiO4+δ cathode for intermediate temperature solid oxide fuel cells. J Power Sources 2014, 248: 647-654.
Y Cao, HT Gu, H Chen, et al. Preparation and characterization of Nd2–xSrxCoO4+δ cathodes for intermediate-temperature solid oxide fuel cell. Int J Hydrogen Energ 2010, 35: 5594-5600.
EV Zharikova, MG Rozova, SM Kazakov, et al. Crystal structure and high-temperature properties of (Pr,Sr)2(Co,Mn)O4±δ with K2NiF4-type structure. Solid State Commun 2016, 245: 31-35.
K Zheng, A Gorzkowska-Sobaś, K Świerczek. Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs. Mater Res Bull 2012, 47: 4089-4095.
GN Mazo, SM Kazakov, LM Kolchina, et al. Thermal expansion behavior and high-temperature electrical conductivity of A2–xA'xCu1–yCoyO4±δ (A=La, Pr; A’=Pr, Sr) oxides with the K2NiF4-type structure. J Alloys Compd 2015, 639: 381-386.
VN Chaudhari, AP Khandale, SS Bhoga. Synthesis and characterization of Ce-doped Sm2CuO4+δ cathode for IT-SOFC applications. Ionics 2017, 23: 2553-2560.
J Zhou, G Chen, K Wu, et al. The performance of La0.6Sr1.4MnO4 layered perovskite electrode material for intermediate temperature symmetrical solid oxide fuel cells. J Power Sources 2014, 270: 418-425.
MV Sandoval, S Durán, A Prada, et al. Synthesis and preliminary study of NdxAE2–xMnO4±δ (AE: Ca, Sr) for symmetrical SOFC electrodes. Solid State Ionics 2018, 317: 194-200.
IP Raevski, SA Prosandeev, AS Bogatin, et al. High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb). J Appl Phys 2003, 93: 4130-4136.
V Bobnar, P Lunkenheimer, M Paraskevopoulos, et al. Separation of grain boundary effects and intrinsic properties in perovskite-like Gd0.6Y0.4BaCo2O5.5 using high-frequency dielectric spectroscopy. Phys Rev B 2002, 65: 184403.
E Iguchi, S Mochizuki. Electric conduction and dielectric relaxation processes in solid oxide fuel cell electrolyte La0.5Sr0.5Ga0.6Ti0.4O3–δ. J Appl Phys 2004, 96: 3889-3895.
MT Tlili, N Chihaoui, M Bejar, et al. Charge ordering analysis by electrical and dielectric measurements in Ca2–xPrxMnO4 (x=0–0.2) compounds. J Alloys Compd 2011, 509: 6447-6451.
A Chouket, W Cheikhrouhou-Koubaa, A Cheikhrouhou, et al. Structural, microstructural and dielectric studies in multiferroic LaSrNiO4–δ prepared by mechanical milling method. J Alloys Compd 2016, 662: 467-474.
A Chouket, V Optasanu, O Bidault, et al. Dielectric relaxation and polaronic hopping in Mn-substituted LaSrNiO4 nickelates prepared by mechanical milling method. J Alloys Compd 2016, 688: 163-172.
J Wang, G Liu, BW Jia, et al. Giant dielectric response and polaronic hopping in Al-substituted A5/3Sr1/3NiO4 (A=La, Nd) ceramics. Ceram Int 2014, 40: 5583-5590.
G Liu, XQ Liu, XM Chen. Contribution of oxygen vacancies to the giant dielectric response in Sm1.5Sr0.5NiO4–δ ceramics. Appl Phys A 2014, 116: 1421-1427.
P Thongbai, T Yamwong, S Maensiri. Microstructure and modified giant dielectric response in Ga-doped La1.5Sr0.5NiO4 ceramics. Mater Lett 2012, 82: 244-247.
J Mira, A Castro-Couceiro, M Sánchez-Andújar, et al. High dielectric constant in charge-ordered Ca1.75Pr0.25MnO4. J Phys D: Appl Phys 2006, 39: 1192-1196.
MM Mao, XC Fan, XM Chen. Effect of A-site ionic radius on the structure and microwave dielectric characteristics of Sr1+xSm1–xAl1–xTixO4 ceramics. Int J Appl Ceram Technol 2010, 7: E156-E162.
C Zhang, L Yi, L Li, et al. Structure and microwave dielectric characteristics of solid solutions in SrNdAlO4–Sr2TiO4 system. Int J Appl Ceram Technol 2013, 10: E70-E76.
MM Mao, XQ Liu, XM Chen. Structural evolution and its effects on dielectric loss in Sr1+xSm1–xAl1–xTixO4 microwave dielectric ceramics. J Am Ceram Soc 2011, 94: 2506-2511.
Y Luo, J Zhang, ZX Yue, et al. Improvement in microwave dielectric properties of Sr2TiO4 ceramics through post- annealing treatment. J Electroceram 2018, 41: 67-72.
B Liu, L Li, XQ Liu, et al. Srn+1TinO3n+1 (n=1, 2) microwave dielectric ceramics with medium dielectric constant and ultra-low dielectric loss. J Am Ceram Soc 2017, 100: 496-500.
AT Mulder, NA Benedek, JM Rondinelli, et al. Turning ABO3 antiferroelectrics into ferroelectrics: Design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 ruddlesden-popper compounds. Adv Funct Mater 2013, 23: 4810-4820.
DL Monika, H Nagabhushana, BM Nagabhushana, et al. One pot auto-ignition based synthesis of novel Sr2CeO4:Ho3+ nanophosphor for photoluminescent applications. J Alloys Compd 2015, 648: 1051-1059.
Z Khadraoui, K Horchani-Naifer, M Ferhi, et al. Electronic structure and optical properties of TbPO4: Experiment and density functional theory calculations. Opt Mater 2015, 47: 484-489.
HF Li, YL Jia, WZ Sun, et al. Novel energy transfer mechanism in single-phased color-tunable Sr2CeO4:Eu3+ phosphors for WLEDs. Opt Mater 2014, 36: 1883-1889.
YW Seo, HM Noh, BK Moon, et al. Structural and luminescent properties of blue-emitting Sr2CeO4 phosphors by high-energy ball milling method. Ceram Int 2015, 41: 1249-1254.
Mr. Gurudeo Nirala and Mr. Dharmendra Yadav are thankful to the Ministry of Human Resource and Development (MHRD), Government of India for the financial support in terms of Senior Research Fellowship (SRF).
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.