1028
Views
139
Downloads
197
Crossref
N/A
WoS
205
Scopus
42
CSCD
High-entropy pyrochlore-type structures based on rare-earth zirconates are successfully produced by conventional solid-state reaction method. Six rare-earth oxides (La2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, and Y2O3) and ZrO2 are used as the raw powders. Five out of the six rare-earth oxides with equimolar ratio and ZrO2 are mixed and sintered at different temperatures for investigating the reaction process. The results demonstrate that the high-entropy pyrochlores (5RE1/5)2Zr2O7 have been formed after heated at 1000 ℃. The (5RE1/5)2Zr2O7 are highly sintering resistant and possess excellent thermal stability. The thermal conductivities of the (5RE1/5)2Zr2O7 high-entropy ceramics are below 1 W·m-1·K-1 in the temperature range of 300-1200 ℃. The (5RE1/5)2Zr2O7 can be potential thermal barrier coating materials.
High-entropy pyrochlore-type structures based on rare-earth zirconates are successfully produced by conventional solid-state reaction method. Six rare-earth oxides (La2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, and Y2O3) and ZrO2 are used as the raw powders. Five out of the six rare-earth oxides with equimolar ratio and ZrO2 are mixed and sintered at different temperatures for investigating the reaction process. The results demonstrate that the high-entropy pyrochlores (5RE1/5)2Zr2O7 have been formed after heated at 1000 ℃. The (5RE1/5)2Zr2O7 are highly sintering resistant and possess excellent thermal stability. The thermal conductivities of the (5RE1/5)2Zr2O7 high-entropy ceramics are below 1 W·m-1·K-1 in the temperature range of 300-1200 ℃. The (5RE1/5)2Zr2O7 can be potential thermal barrier coating materials.
Financial support from the National Natural Science Foundation of China (Nos. 51532009, 51602324, and 51872405) are gratefully acknowledged.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.